Machinable Materials

  • Chapter
  • First Online:
Rotary Ultrasonic Machining

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

  • 307 Accesses

Abstract

The ultrasound is beneficial in the machining of a wide range of materials. However, the device for rotary ultrasonic machining is not cheap. It can reach the full potential when materials are machining, which are not easy machinable by other methods. Those materials include very hard materials, such as technical glass, advanced ceramics and minerals. The application is focused on the processing of synthetic diamond, cubic boron nitride, alumina, zirconia, carborundum, etc. Beside mentioned hard and brittle materials, ultrasound in machining can be used for machining of chromium-cobalt, titanium, wolfram carbide, graphite, martensite, ferrite, vanadium, stainless steel, composites reinforced by aramid/carbon/glass fibres, and many more. Such a range of machinable materials makes rotary ultrasonic machining attractive in sectors, where machining of different kinds of unique materials is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 3B_diamond (2019) Changsha 3 better ultra-hard materials, Co. Ltd. http://www.3bdiamond.com/userlist/xiongxl/text-710.html. Accessed 21 July 2019

  2. Accuratus (2014) Aluminum oxide, Al2O3 ceramic properties. http://accuratus.com/alumox.html. Accessed 25 July 2014

  3. Accuratus (2018) Silicon carbide, SiC ceramic properties. https://accuratus.com/silicar.html. Accessed 12 Dec 2018

  4. Ahmed W, Sein H, Ali N, Gracio J, Woodwards R (2003) Diamond films grown on cemented WC-Co dental burs using an improved CVD method. Diam Relat Mater 12(8):1300

    Article  Google Scholar 

  5. Alumina (2014) Alumina (aluminium oxide)—the different types of commercially available grades. The A to Z of Materials

    Google Scholar 

  6. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1990) Graphite. Handbook of mineralogy. I (elements, sulfides, sulfosalts). Mineralogical Society of America, Chantilly, VA, USA. ISBN 0962209708

    Google Scholar 

  7. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1997) Corundum. Handbook of mineralogy III (halides, hydroxides, oxides). Mineralogical Society of America, Chantilly, VA, USA. ISBN 0962209724

    Google Scholar 

  8. Békés J, Hrubec J, Kicko J, Lipa Z (1999) Teória obrábania. Publisher STU, Bratislava, 157 p. ISBN 80-227-1261-2

    Google Scholar 

  9. Blank V, Popov M, Pivovarov G, Lvova N, Gogolinsky K, Reshetov V (1998) Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear. Diam Relat Mater 7(2–5):427

    Article  Google Scholar 

  10. Calculator (2014) Calculator for conversion between vickers hardness number and SI units MPa and GPa. http://www.gordonengland.co.uk/hardness/hvconv.htm. Accessed 18 July 2014

  11. Catledge SA, Vohra YK (1999) Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations. J Appl Phys 86:698

    Google Scholar 

  12. Ceramic industry (2018) Oxide ceramics—zirconium oxide. The all-purpose construction material. https://www.ceramtec.com/ceramic-materials/zirconium-oxide/. Accessed 2 Oct 2012

  13. Chih-Shiue Y, Ho-Kwang M, Wei L, Jiang Q, Yusheng Z, Russell JH (2005) Ultrahard diamond single crystals from chemical vapor deposition. Physica Status Solidi (a) 201(4):R25. https://doi.org/10.1002/pssa.200409033

    Article  Google Scholar 

  14. Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. Cambridge University Press 37(10):890–941

    Google Scholar 

  15. Coelho RT, Yamada S, Aspinwall DK, Wise MLH (1995) The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminum-based alloys including MMC. Int J Mach Tools Manuf 35(5):761

    Article  Google Scholar 

  16. Davis RF (2017) Silicon carbide. Reference module in materials science and materials engineering

    Google Scholar 

  17. Delhaes P (2001) Graphite and precursors. CRC Press. ISBN 90-5699-228-7

    Google Scholar 

  18. Denisenko A, Kohn E (2005) Diamond power devices. Concepts and limits. Diam Relat Mater 14(3–7):491

    Google Scholar 

  19. Dentallab (2014) Modern dental laboratory USA—Procera alumina. http://moderndentalusa.com/products/all-ceramic/procera-alumina/. Accessed 26 July 2014

  20. Dey SR, Meshram MP, Kodli BK (2014) Friction stir welding of austenitic stainless steel by PCBN tool and its joint analyses. In: Procedia materials science, vol 6. 3rd International conference on materials processing and characterization (ICMPC), pp 135–139

    Google Scholar 

  21. Duroc-Danner JM (2011) Untreated yellowish orange sapphire exhibiting its natural color. J Gemmol 32:175–178

    Article  Google Scholar 

  22. Ebnesajjad S (2014) Surface treatment and bonding of ceramics. Surface treatment of materials for adhesive bonding, pp 283–299

    Google Scholar 

  23. Ekimov EA, Sidorov VA, Bauer ED, Mel’nik NN, Curro NJ, Thompson JD, Stishov SM (2004) Superconductivity in diamond. Nature 428(6982):542–545. ar**v:cond-mat/0404156

  24. Fischer-Cripps AC (2004) Nanoindentation. Springer, New York, p 198. ISBN 0-387-22045-3

    Book  Google Scholar 

  25. Fukunaga O (2002) Science and technology in the recent development of boron nitride materials. J Phys Condens Matter 14(44):10979

    Article  Google Scholar 

  26. Gray T (2009) The elements. Illinois, USA, 240 pp. ISBN 978-80-7391-544-5

    Google Scholar 

  27. Greenwood NN, Earnshaw A (1997) Chemistry of the elements. Butterworth-Heinemann, Oxford. ISBN 0-7506-3365-4

    Google Scholar 

  28. Greim J, Schwetz KA (2005) Boron carbide, boron nitride, and metal borides. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  29. Guides (2008) Guides for the jewelry, precious metals, and pewter industries. 2008. Federal trade commission letter declining to amend the guides with respect to use of the term “cultured”, U.S. Federal Trade Commission, July 21

    Google Scholar 

  30. HPHT (2014) High pressure, high temperature. International diamond laboratories. http://www.diamondlab.org/80-hpht_synthesis.htm. Accessed 20 July 2014

  31. Hansson T, Warren R (2000) Particle and whisker reinforced brittle matrix composites. Compr Compos Mater 4:579–609

    Article  Google Scholar 

  32. Harris DC (1999) Materials for infrared windows and domes: properties and performance. SPIE Press, pp 303–334. ISBN 0-8194-3482-5

    Google Scholar 

  33. Heartwig J et al (2006) Diamonds for modern synchrotron radiation sources. European Synchrotron Radiation Facility

    Google Scholar 

  34. Higashi GS, Fleming CG (1989) Sequential surface chemical reaction limited growth of high quality Al2O3 dielectrics. Appl Phys Lett 55(19):1963–1965

    Article  Google Scholar 

  35. Holtzapffel C (1856) Turning and mechanical manipulation. Holtzapffel, pp. 176–178. ISBN 1-879335-39-5

    Google Scholar 

  36. Hudson LK, Misra Ch, Perrotta AJ, Wefers K, Williams FS (2002) Aluminum oxide. In Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  37. Hurlbut CS, Klein C (1985) Manual of mineralogy, 20th edn. Wiley, pp 300–302. ISBN 0-471-80580-7

    Google Scholar 

  38. Ito E, Schubert G (2007) Multianvil cells and high-pressure experimental methods. In: Treatise of geophysics 2. Elsevier, Amsterdam, pp. 197–230. ISBN 0-8129-2275-1

    Google Scholar 

  39. Jackson DD, Aracne-Ruddle C, Malba V, Weir ST, Catledge SA, Vohra YK (2003) Magnetic susceptibility measurements at high pressure using designer diamond anvils. Rev Sci Instrum 74(4):2467

    Article  Google Scholar 

  40. Janáč A, Kicko J, Lipa Z, Charbula J, Peterka J (1994) Technológia obrábania, montáže a základy strojárskej metrológie. Publisher STU, Bratislava, 317 p. ISBN 80-227-0698-1

    Google Scholar 

  41. Janáč A, Lipa Z, Charbula J, Peterka J, Görög A (2002) Technológia obrábania a metrológia. Publisher STU, Bratislava, 194 p. ISBN 80-227-1711-8

    Google Scholar 

  42. Janáč A, Bátora B, Baránek I, Lipa Z (2004) Technológia obrábania. Publisher STU, Bratislava, 289 p. ISBN 80-277-2031-3

    Google Scholar 

  43. Janáč A, Lipa Z, Peterka J (2006) Teória obrábania. Publisher STU, Bratislava, 199 p. ISBN 80-227-2347-9

    Google Scholar 

  44. John P, Polwart N, Troupe CE, Wilson JIB (2002) The oxidation of (100) textured diamond. Diam Relat Mater 11(3–6):861

    Article  Google Scholar 

  45. Kawaguchi M et al (2008) Electronic Structure and Intercalation chemistry of graphite-like layered material with a composition of BC6N. J Phys Chem Solids 69(5–6):1171

    Article  Google Scholar 

  46. Khakani MA, Chaker M (1993) Physical properties of the X-ray membrane materials. J Vac Sci Technol B 11(6):2930–2937

    Article  Google Scholar 

  47. Kim (2014) Do Kyung Kim. Nanoindentation lecture 1 basic principle. Department of Material Science and Engineering, KAIST, Korea

    Google Scholar 

  48. Komatsu T et al (1999) Creation of superhard B-C–N heterodiamond using an advanced shock wave compression technology. J Mater Process Technol 85:69

    Article  Google Scholar 

  49. Kupec T, Hlaváčová I, Turňa M (2012) Friction stir welding of Mg and Al alloys. In: Advanced materials research. International conference on advanced material and manufacturing science (ICAMMS), vol 875–877. Trans Tech Publications, China, Bei**g, pp 1477–1482, 6 p

    Google Scholar 

  50. Kupec T, Turňa M, Zifčák P (2013) Friction Stir welding of magnesium alloy type AZ 61. In: IN-TECH 2013: Proceedings of international conference on innovative technologies, Budapest, Hungary—Rijeka: Faculty of Engineering University of Rijeka, pp 153–156. ISBN 978-953-6326-88-4

    Google Scholar 

  51. Kupec T, Turňa M, Kuruc M, Jáňa M, Behúlová M (2014) Influence of tool geometry on the quality of aluminum alloy weld joints produced by FSW. In: Proceedings of the 10th international symposium on friction stir welding. TWl Ltd., Bei**g, China—Cambridge, 10 p. ISBN 978-1-903761-10-6

    Google Scholar 

  52. Kuruc M, Peterka J (2014a) Rotary ultrasonic machining of poly-crystalline cubic boron nitride. In: IDS 2014. International doctoral seminar: proceedings of the 9th international doctoral seminar, Zielona Góra, Poland. – Zielona Góra: University of Zielona Góra, pp 110–116. ISBN 978-80-8096-195-4

    Google Scholar 

  53. Kuruc M, Necpal M, Peterka J (2014b) Machining of poly-crystalline cubic boron nitride by laser beam machining in terms of surface roughness. J Prod Eng 17(1):101–104. ISSN 1821-4932

    Google Scholar 

  54. Kuruc M, Vopát T, Peterka J (2014c) Surface roughness of poly-crystalline cubic boron nitride after rotary ultrasonic machining. In: Annals of DAAAM and Proceedings of DAAAM Symposium: Collection of Working Papers for 25th DAAAM international symposium 25(1). ISSN 2304–1382

    Google Scholar 

  55. Kuruc M (2015a) Ultrasonic machining. Dissertation thesis, STU MTF, 172 pp

    Google Scholar 

  56. Kuruc M, Peterka J (2015b) Influence of machining parameters on machine tool loads at rotary ultrasonic machining of synthetic diamond. In Proceedings of TEAM 2015: 7th international scientific and expert conference of the international TEAM society, Belgrade, Serbia. Belgrade: Faculty of Mechanical Engineering, pp 598–601. ISBN 978-86-7083-877-2

    Google Scholar 

  57. Kuruc M, Vagovský J, Peterka J (2015c) Influence of machining parameters on machine tool loads at rotary ultrasonic machining of cubic boron nitride. In ICPM 2015: Proceedings of the 8th international congress on precision machining. Novi Sad, Serbia. Novi Sad: Faculty of Technical Sciences, pp 195–200. ISBN 978-86-7892-742-3

    Google Scholar 

  58. Kuruc M, Kusý M, Šimna V, Peterka J (2015d) Influence of machining parameters on surface topography of cubic boron nitride at rotary ultrasonic machining. In ICPM 2015: Proceedings of the 8th international congress on precision machining. Novi Sad, Serbia. Novi Sad: Faculty of Technical Sciences, pp 157–162. ISBN 978-86-7892-742-3

    Google Scholar 

  59. Kuruc M (2015e) Machine tool loads in rotary ultrasonic machining of alumina, CBN and synthetic diamond. In: Proceedings of the 26th DAAAM international symposium. DAAAM International, Viedeň, pp 519–523. ISSN 1726-9679. ISBN 978-3-902734-07-5

    Google Scholar 

  60. Kuruc M, Necpal M, Jáňa M, Peterka J (2015f) Comparison of machining of poly-crystalline cubic boron nitride by rotary ultrasonic machining and laser beam machining in terms of chemical affection. In: Automation in production planning and manufacturing: 16th international scientific conference for Ph.D. students. Žilina, pp 69–74. ISBN 978-80-89276-47-9

    Google Scholar 

  61. Kuruc M, Urminský J, Necpal M, Morovič L, Peterka J (2015g) Comparison of machining of poly-crystalline cubic boron nitride by rotary ultrasonic machining and laser beam machining in terms of shape geometry. In: Strojírenská technologie – Plzeň: 6th International Conference, Plzeň, ČR. Plzeň: Západočeská univerzita v Plzni, pp 122–128. ISBN 978-80-261-0304-2

    Google Scholar 

  62. Kyocera (2018). Kyocera global. Fine ceramics (advanced ceramics). Zirconia – technical data. https://global.kyocera.com/prdct/fc/list/material/zirconia/zirconia.html. Accessed 15 Dec 2018

  63. Lanhua W, Kuo P, Thomas R, Anthony T, Banholzer W (1993) Thermal conductivity of isotopically modified single crystal diamond. Phys Rev Lett 70(24):3764–3767

    Article  Google Scholar 

  64. Lavrakas V (1957) The lubricating properties of graphite. J Chem Educ 34(5):240

    Article  Google Scholar 

  65. Leichtfried G et al (2002) Properties of diamond and cubic boron nitride. In: Landolt-Börnstein—group VIII, advanced materials and technologies: powder metallurgy data. Refractory, Hard and Intermetallic Materials 2A2. Springer, Berlin, pp 118–139

    Google Scholar 

  66. Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequnces. J Am Ceram Soc 81(8):1995–2012

    Article  Google Scholar 

  67. Locke CW, Severino A, Via FV, Reyes M, Register J, Saddow SE (2012) SiC films and coatings. Silicon Carbide Biotechnology, pp 17–61

    Google Scholar 

  68. Mallick PK (2008) Fiber-reinforced composites materials, manufacturing, and design, 3rd ed (Ch. 2.1.7). CRC Press, Boca Raton, FL. ISBN 0-8493-4205-8

    Google Scholar 

  69. Manicone PF, Iommetti PR, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35(11):819–826

    Article  Google Scholar 

  70. Material (2014) Material properties data: alumina (aluminum oxide). http://www.makeitfrom.com. Accessed 24 July 2014

  71. Nanodiamond (2014) Nanodiamond and superhard thin-films. http://www.cityu.edu.hk/cosdaf/cbn_property.htm. Accessed 17 July 2014

  72. Nassau K, Nassau J (1979) The history and present status of synthetic diamond. J Cryst Growth 46(2):157

    Article  Google Scholar 

  73. Neves AJ, Nazaré MH (2001) Properties, growth and applications of diamond. IET, pp 142–147. ISBN 0-85296-785-3

    Google Scholar 

  74. Nielsen R (2005) Zirconium and zirconium compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. https://doi.org/10.1002/14356007.a28_543

  75. Nusinovich GS (2004) Introduction to the physics of gyrotrons. JHU Press, p 229. ISBN 0-8018-7921-3

    Google Scholar 

  76. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6)

    Google Scholar 

  77. Osawa E (2007) Recent progress and perspectives in single-digit nanodiamond. Diam Relat Mater 16(12):2018–2022

    Article  Google Scholar 

  78. Pan Z et al (2009) Harder than diamond: superior indentation strength of Wurtzite BN and lonsdaleite. Phys Rev Lett 102(5):055503

    Article  Google Scholar 

  79. Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51(2):191

    Article  Google Scholar 

  80. Papaspyridakos P, Kunal L (2008) Complete arch implant rehabilitation using subtractive rapid prototy** and porcelain fused to zirconia prosthesis: a clinical report. J Prosthet Dent 100(3):165–172. https://doi.org/10.1016/S0022-3913(08)00110-8

    Article  Google Scholar 

  81. Patnaik P (2002) Handbook of inorganic chemicals. McGraw-Hill. ISBN 0-07-049439-8

    Google Scholar 

  82. Porter DL, Evans AG, Heuer AH (1979) Transformation toughening in PSZ. Acta Metall 27:1649. https://doi.org/10.1016/0001-6160(79)90046-4

    Article  Google Scholar 

  83. Precision Ceramics (2019) Advanced materials solution. https://www.precision-ceramics.co.uk/. Accessed 10 Dec 2019

  84. Railkar TA, Kang WP, Windischmann H, Malshe AP, Naseem HA, Davidson JL, Brown WD (2000) A critical review of chemical vapor-deposited (CVD) diamond for electronic applications. Crit Rev Solid State Mater Sci 25(3):163

    Article  Google Scholar 

  85. Read PG (2005) Gemmology. Butterworth-Heinemann, pp 49–50. ISBN 0-7506-6449-5

    Google Scholar 

  86. Rowe WB (2014) Grinding wheel developments. Principles of Modern Grinding Technology, pp 35–62 (2014)

    Google Scholar 

  87. Sauer report (2004n) Report #20040103. Monokristallines Silizium. Ergebnisse der Musterbearbeitung

    Google Scholar 

  88. Sauer report (2004o) Report #20040170. Lightweight Silicon Core for Mirror. Results of test trial

    Google Scholar 

  89. Sauer report (2004p) Report #20040185. Si circular blank. Results of test trial

    Google Scholar 

  90. Sauer report (2004r) Report #20040213. Silicium Rechteckplatte. Ergebnisse der Musterbearbeitung

    Google Scholar 

  91. Sauer report (2004s) Report #20040073. BK7 lens. Results of test trial

    Google Scholar 

  92. Sauer report (2005a) Report #20050183. Medical implant. Results of test trial

    Google Scholar 

  93. Sauer report (2005b) Report #20050095. Alumina ceramic. Results of test trial

    Google Scholar 

  94. Sauer report (2005c) Report #20050133. Alumina component. Results of test trial

    Google Scholar 

  95. Sauer report (2005d) Report #20050112. Dental implant. Results of test trial

    Google Scholar 

  96. Sauer report (2005e) Report #20050049. Zirconia component. Results of test trial

    Google Scholar 

  97. Sauer report (2005f) Report #20050118. SiC component. Results of test trial

    Google Scholar 

  98. Sauer report (2005g) Report #20050158. Lightweight SiC core for mirror. Results of test trial

    Google Scholar 

  99. Sauer report (2005h) Report #20050075. CMM Probes. Results of test trial

    Google Scholar 

  100. Sauer report (2005i) Report #20050080. Prägeform. Ergebnisse der Musterbearbeitung

    Google Scholar 

  101. Sauer report (2005j) Report #20050170. Umformwerkzeug. Ergebnisse der Musterbearbeitung

    Google Scholar 

  102. Sauer report (2005k) Report #20050137. Borosilikat Glasspritzen zur Dosierung kleinster Flüssigkeitsmengen. Ergebnisse der Musterbearbeitung

    Google Scholar 

  103. Sauer report (2005l) Report #20050147. Glasspritzen zur Dosierung kleinster Flüssigkeitsmengen. Ergebnisse der Musterbearbeitung

    Google Scholar 

  104. Sauer report (2005m) Report #20050016. Silicium Rechteckblock. Ergebnisse der Musterbearbeitung

    Google Scholar 

  105. Sauer report (2005n) Report #20050070. Bohrkarbid Rohteil. Ergebnisse der Musterbearbeitung

    Google Scholar 

  106. Sauer report (2005o) Report #20050071. B4C Rohteil. Ergebnisse der Musterbearbeitung

    Google Scholar 

  107. Sauer report (2005p) Report #20050011. Leiste „Halter unten“. Ergebnisse der Musterbearbeitung

    Google Scholar 

  108. Sauer report (2005r) Report #20050029. Optical and lasers prism. Ergebnisse der Musterbearbeitung

    Google Scholar 

  109. Sauer report (2006a) Report #20060106. X-ray machine part. Results of test trial

    Google Scholar 

  110. Sauer report (2006b) Report #20060102. Nozzle. Technology report

    Google Scholar 

  111. Sauer report (2006c) Report #20060095. SiSiC block. Technology report

    Google Scholar 

  112. Sauer report (2006d) Report #20060097. SiC ring. Technology report

    Google Scholar 

  113. Sauer report (2006e) Report #20060078. Verkleidung für Schmelzöfen. Technology report

    Google Scholar 

  114. Sauer report (2006f) Report #20060031. Ytterbium Oxide. Technology report

    Google Scholar 

  115. Sauer report (2006g) Report #20060028. BK7 glass block. Technology report

    Google Scholar 

  116. Sauer report (2006h) Report #20060079. BK7 tube. Technology report

    Google Scholar 

  117. Sauer report (2006i) Report #20060082. BK7 block. Technology report

    Google Scholar 

  118. Sauer report (2007a) Report #20070046. Hip Joint. Technology report

    Google Scholar 

  119. Sauer report (2007b) Report #20071120. AlN Testteil

    Google Scholar 

  120. Sauer report (2007c) Report #20070005. Si3N4 test pieces. Technology report

    Google Scholar 

  121. Sauer report (2007d) Report #20070036. Gehäuse. Technology report

    Google Scholar 

  122. Sauer report (2008a) Report #20080001. Al2O3 test part

    Google Scholar 

  123. Sauer report (2008b) Report #20080002. Zirconium Tooth Bridge

    Google Scholar 

  124. Sauer report (2008c) Report #20080019. Zirconium Oxide Bolt

    Google Scholar 

  125. Sauer report (2008d) Report #20080020. Zirconium implant

    Google Scholar 

  126. Sauer report (2003) Report #20030039. Zirconia disc. Results of sample processing

    Google Scholar 

  127. Sauer report (2004a) Report #20040179. Alumina part. Results of test trial

    Google Scholar 

  128. Sauer report (2004b) Report #20040160. Zirconia prosthesis. Results of sample processing

    Google Scholar 

  129. Sauer report (2004c) Report #20040162. Tooth crown. Results of test trial

    Google Scholar 

  130. Sauer report (2004d) Report #20040001. Drilling of SiC. Results of test trial

    Google Scholar 

  131. Sauer report (2004e) Report #20040058. Sealing rings. Results of test trial

    Google Scholar 

  132. Sauer report (2004f) Report #20040064. Probeplatte. Results of test trial

    Google Scholar 

  133. Sauer report (2004g) Report #20040207. Test material. Results of test trial

    Google Scholar 

  134. Sauer report (2004h) Report #20040096. Ring. Results of test trial

    Google Scholar 

  135. Sauer report (2004i) Report #20040043. Bohren von Kanälen. Ergebnisse der Musterbearbeitung

    Google Scholar 

  136. Sauer report (2004j) Report #20040068. Bohrung. Ergebnisse der Musterbearbeitung

    Google Scholar 

  137. Sauer report (2004k) Report #20040134. Heißpresswerkzeug. Ergebnisse der Musterbearbeitung

    Google Scholar 

  138. Sauer report (2004l) Report #20040199. Drilling hole to SiN. Results of test trial

    Google Scholar 

  139. Sauer report (2004m) Report #20040002. Silikat Glaslinse. Ergebnisse der Musterbearbeitung

    Google Scholar 

  140. SheN J (2013) Advanced ceramics for dentistry. Elsevier/BH, Amsterdam, 271 pp. ISBN 978-0123946195

    Google Scholar 

  141. Silberberg MS (2009) The molecular nature of matter and change. In: Chemistry, 5th edn. McGraw-Hill, New York, p 483. ISBN 0073048593

    Google Scholar 

  142. Smither RK, Davey S, Purohit A (1992) Diamond monochromator for high heat flux synchrotron X-ray beams. In: Khounsary AM (ed) Proceedings of the SPIE, vol 1739. High Heat Flux Engineering, pp 628–642

    Google Scholar 

  143. Stevens R (1986) Introduction to Zirconia. In: Magnesium Elektron Publication. No 113

    Google Scholar 

  144. Sumiya H (2005) Super-hard diamond indenter prepared from high-purity synthetic diamond crystal. Rev Sci Instrum 76(2):026112

    Article  Google Scholar 

  145. Supply (2013) The state of 2013 global rough diamond supply. Resource Investor. 22 Jan 2013

    Google Scholar 

  146. Taniguchi T et al (2002) Ultraviolet light emission from self-organized p–n domains in cubic boron nitride bulk single crystals grown under high pressure. Appl Phys Lett 81(22):4145

    Article  Google Scholar 

  147. Todd RH, Allen DK, Alting L (1994) Manufacturing processes reference guide. Industrial Press Inc., pp 43–48. ISBN 0-8311-3049-0

    Google Scholar 

  148. UHD (2018) Ultra-hard China. https://www.ultrahard-china.com/large-single-crystal-diamond/large-single-crystal-diamond.html. Accessed 1 Dec 2018

  149. Unidens (2014) zubná technika. http://unidens.com/web/website/mainmenu/mainpage/. Accessed 19 July 2014

  150. Vel L et al (1991) Cubic boron nitride: synthesis, physicochemical properties and applications. Mater Sci Eng, B 10(2):149

    Article  Google Scholar 

  151. Veprek S, Zeer A, Riedel R (2000) In: Riedel R (ed) Handbook of ceramic hard materials. Wiley, Weinheim 2000. ISBN 3-527-29972-6

    Google Scholar 

  152. Wentorf RH (1961) Synthesis of the cubic form of boron nitride. J Chem Phys 34(3):809–812

    Article  Google Scholar 

  153. Wentorf RH, Devries RC, Bundy FP (1980) Sintered superhard materials. Science 208(4446):873–880. https://doi.org/10.1126/science.208.4446.873. PMID 17772811

  154. Werner M, Locher R (1998) Growth and application of undoped and doped diamond films. Rep Prog Phys 61(12):1665

    Article  Google Scholar 

  155. Yongjun T et al (2013) Ultrahard nanotwinned cubic boron nitride. Nature 493(7432):385–388

    Article  Google Scholar 

  156. Zoski CG (2007) Handbook of electrochemistry. Elsevier, p 136. ISBN 0-444-51958-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Kuruc .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuruc, M. (2021). Machinable Materials. In: Rotary Ultrasonic Machining. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-67944-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67944-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67943-9

  • Online ISBN: 978-3-030-67944-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation