Few-Shot Microscopy Image Cell Segmentation

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12461))

Abstract

Automatic cell segmentation in microscopy images works well with the support of deep neural networks trained with full supervision. Collecting and annotating images, though, is not a sustainable solution for every new microscopy database and cell type. Instead, we assume that we can access a plethora of annotated image data sets from different domains (sources) and a limited number of annotated image data sets from the domain of interest (target), where each domain denotes not only different image appearance but also a different type of cell segmentation problem. We pose this problem as meta-learning where the goal is to learn a generic and adaptable few-shot learning model from the available source domain data sets and cell segmentation tasks. The model can be afterwards fine-tuned on the few annotated images of the target domain that contains different image appearance and different cell type. In our meta-learning training, we propose the combination of three objective functions to segment the cells, move the segmentation results away from the classification boundary using cross-domain tasks, and learn an invariant representation between tasks of the source domains. Our experiments on five public databases show promising results from 1- to 10-shot meta-learning using standard segmentation neural network architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 94.94
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Yussef93/FewShotCellSegmentation.

References

  1. Arteta, C., Lempitsky, V., Zisserman, A.: Counting in the Wild. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 483–498. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_30

    Chapter  Google Scholar 

  2. Belagiannis, V., Farshad, A., Galasso, F.: Adversarial network compression. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11132, pp. 431–449. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11018-5_37

    Chapter  Google Scholar 

  3. de Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2015)

    Google Scholar 

  4. Bronskill, J., Gordon, J., Requeima, J., Nowozin, S., Turner, R.E.: Tasknorm: ethinking batch normalization for meta-learning. ar**v preprint ar**v:2003.03284 (2020)

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  6. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)

    Google Scholar 

  7. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  8. Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., Asfour, T., Abbeel, P.: Model-based reinforcement learning via meta-policy optimization. ar**v preprint ar**v:1809.05214 (2018)

  9. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. ar**v preprint ar**v:1909.02729 (2019)

  10. Dijkstra, K., van de Loosdrecht, J., Schomaker, L.R.B., Wiering, M.A.: CentroidNet: a deep neural network for joint object localization and counting. In: Brefeld, U., Curry, E., Daly, E., MacNamee, B., Marascu, A., Pinelli, F., Berlingerio, M., Hurley, N. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 585–601. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_36

    Chapter  Google Scholar 

  11. Dong, N., **ng, E.: Few-shot semantic segmentation with prototype learning. In: BMVC, vol. 3 (2018)

    Google Scholar 

  12. Dou, Q., de Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: Advances in Neural Information Processing Systems, pp. 6447–6458 (2019)

    Google Scholar 

  13. Faustino, G.M., Gattass, M., Rehen, S., de Lucena, C.J.: Automatic embryonic stem cells detection and counting method in fluorescence microscopy images. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 799–802. IEEE (2009)

    Google Scholar 

  14. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1126–1135. JMLR. org (2017)

    Google Scholar 

  15. Gerhard, S., Funke, J., Martel, J., Cardona, A., Fetter, R.: Segmented anisotropic ss TEM dataset of neural tissue. figshare (2013)

    Google Scholar 

  16. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in Neural Information Processing Systems, pp. 529–536 (2005)

    Google Scholar 

  17. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. ar**v preprint ar**v:1503.02531 (2015)

  18. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Med. Imaging 26(7), 1010–1016 (2007)

    Article  Google Scholar 

  19. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: 32nd AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  20. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  21. Lu, Z., Carneiro, G., Bradley, A.P.: An improved joint optimization of multiple level set functions for the segmentation of overlap** cervical cells. IEEE Trans. Image Process. 24(4), 1261–1272 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1987–1994 (2013)

    Google Scholar 

  23. Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Metric learning for large scale image classification: generalizing to new classes at near-zero cost. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 488–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_35

    Chapter  Google Scholar 

  24. Munkhdalai, T., Yu, H.: Meta networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2554–2563 (2017). JMLR. org

    Google Scholar 

  25. Naylor, P., Laé, M., Reyal, F., Walter, T.: Nuclei segmentation in histopathology images using deep neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 933–936. IEEE (2017)

    Google Scholar 

  26. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2018)

    Article  Google Scholar 

  27. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. ar**v preprint ar**v:1803.02999 (2018)

  28. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)

    Google Scholar 

  29. Rohrbach, M., Ebert, S., Schiele, B.: Transfer learning in a transductive setting. In: Advances in Neural Information Processing Systems, pp. 46–54 (2013)

    Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Schmidhuber, J.: Learning to control fast-weight memories: an alternative to dynamic recurrent networks. Neural Comput. 4(1), 131–139 (1992)

    Article  Google Scholar 

  32. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

    Google Scholar 

  33. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  34. Wählby, C., Sintorn, I.M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc. 215(1), 67–76 (2004)

    Article  MathSciNet  Google Scholar 

  35. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)

    Google Scholar 

  36. **e, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detection with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 6(3), 283–292 (2018)

    Article  Google Scholar 

  37. **ng, F., Yang, L.: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9, 234–263 (2016)

    Article  Google Scholar 

  38. Zhang, X., Wang, H., Collins, T.J., Luo, Z., Li, M.: Classifying stem cell differentiation images by information distance. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7523, pp. 269–282. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33460-3_23

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Deutsche Forschungsgemeinschaft (DFG), Research Training Group GRK 2203: Micro- and nano-scale sensor technologies for the lung (PULMOSENS), and the Australian Research Council through grant FT190100525. G.C. acknowledges the support by the Alexander von Humboldt-Stiftung for the renewed research stay sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Dawoud .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 995 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dawoud, Y., Hornauer, J., Carneiro, G., Belagiannis, V. (2021). Few-Shot Microscopy Image Cell Segmentation. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12461. Springer, Cham. https://doi.org/10.1007/978-3-030-67670-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67670-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67669-8

  • Online ISBN: 978-3-030-67670-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation