Potential Effects of Short-Range Order on Hydrogen Embrittlement of Stable Austenitic Steels—A Review

  • Chapter
  • First Online:
Advances in Hydrogen Embrittlement Study

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 143))

  • 975 Accesses

Abstract

Here, we present a review of the hydrogen embrittlement behavior of face-centered cubic (FCC) alloys with short-range order (SRO) of solute atoms. In this paper, three types of FCC alloys are introduced: Fe–Mn–C austenitic steels, high-nitrogen steels, and CoCrFeMnNi high-entropy alloys. The Fe–Mn–C austenitic steels show dynamic strain aging associated with Mn–C SRO, which causes deformation localization and acceleration of premature fracture even without hydrogen effects. The disadvantageous effect of dynamic strain aging on ductility, which is associated with the deformation localization, amplify plasticity-assisted hydrogen embrittlement. Cr–N and Co–Cr–Ni SRO effects in high-nitrogen austenitic steels and high-entropy alloys enhance the dislocation planarity, which causes stress concentration in the grain interior and near the grain boundaries. The stress concentration coupled with hydrogen effects causes quasi-cleavage and intergranular fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Currently, the effect of Mn–C interaction is still under debate. A recent work pointed out a type of dynamic strain aging is triggered by a pipe diffusion of carbon without Mn–C SRO [27].

  2. 2.

    When the hydrogen gas pressure was 15 MPa, the HEA showed no degradation of elongation and strength [67] .

References

  1. Zhang, L., Wen, M., Imade, M., Fukuyama, S., Yokogawa, K.: Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures. Acta Mater. 56(14), 3414–3421 (2008). https://doi.org/10.1016/j.actamat.2008.03.022

    Article  CAS  Google Scholar 

  2. Omura, T., Nakamura, J., Hirata, H., Jotoku, K., Ueyama, M., Osuki, T., Terunuma, M.: Effect of surface hydrogen concentration on hydrogen embrittlement properties of stainless steels and Ni based alloys. ISIJ Int. 56(3), 405–412 (2016). https://doi.org/10.2355/isi**ternational.ISIJINT-2015-268

    Article  CAS  Google Scholar 

  3. Izawa, C., Wagner, S., Deutges, M., Martin, M., Weber, S., Pargeter, R., Michler, T., Uchida, H.-H., Gemma, R., Pundt, A.: Relationship between hydrogen embrittlement and M\(_{\rm {d}30}\) temperature: prediction of low-nickel austenitic stainless steel’s resistance. Int. J. Hydr. Energy 44(45), 25064–25075 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.179

  4. Koyama, M., Ogawa, T., Yan, D., Matsumoto, Y., Tasan, C.C., Takai, K., Tsuzaki, K.: Hydrogen desorption and cracking associated with martensitic trans-formation in Fe–Cr–Ni-Based austenitic steels with different carbon contents. Int. J. Hydr. Energy 42(42), 26423–26435 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.209

  5. Teus, S.M., Shyvanyuk, V.N., Gavriljuk, V.G.: Hydrogen-induced \( {\gamma }\rightarrow {\varepsilon }\) trans-formation and the role of \({\varepsilon }\)-martensite in hydrogen embrittlement of austenit-ic steels. Mater. Sci. Eng. A 497(1), 290–294 (2008). https://doi.org/10.1016/j.msea.2008.07.003

  6. Chun, Y.S., Kim, J.S., Park, K.-T., Lee, Y.-K., Lee, C.S.: Role of \(\rm {\varepsilon }\) martensite in tensile properties and hydrogen degradation of high-Mn steels. Mater. Sci. Eng. A 533, 87–95 (2012). https://doi.org/10.1016/j.msea.2011.11.039

    Article  CAS  Google Scholar 

  7. Koyama, M., Tasan, C.C., Tsuzaki, K.: Overview of metastability and compositional complexity effects for hydrogen-resistant iron alloys: inverse austenite stability effects. Eng. Fract. Mech. 214, 123–133 (2019). https://doi.org/10.1016/j.engfracmech.2019.03.049

    Article  Google Scholar 

  8. Koyama, M., Okazaki, S., Sawaguchi, T., Tsuzaki, K.: Hydrogen embrittlement susceptibility of Fe–Mn binary alloys with high Mn content: effects of stable and metastable \(\rm {\varepsilon }\)-martensite, and Mn concentration. Metall. Mater. Trans. A 47(6), 2656–2673 (2016). https://doi.org/10.1007/s11661-016-3431-9

    Article  CAS  Google Scholar 

  9. Gibbs, P.J., Hough, P.D., Thürmer, K., Somerday, B.P., San Marchi, C., Zimmerman, J.A.: Stacking fault energy based alloy screening for hydrogen compatibility. JOM 72(5), 1982–1992 (2020). https://doi.org/10.1007/s11837-020-04106-7

  10. Symons, D.M.: Hydrogen embrittlement of Ni–Cr–Fe alloys. Metall. Mater. Trans. A 28(3), 655–663 (1997). https://doi.org/10.1007/s11661-997-0051-4

    Article  Google Scholar 

  11. Dastur, Y.N., Leslie, W.C.: Mechanism of work hardening in Hadfield manganese steel. Metall. Trans. A 12(5), 749–759 (1981). https://doi.org/10.1007/BF02648339

    Article  CAS  Google Scholar 

  12. Koyama, M., Shimomura, Y., Chiba, A., Akiyama, E., Tsuzaki, K.: Room-temperature blue brittleness of Fe-Mn-C austenitic steels. Scr. Mater. 141, 20–23 (2017). https://doi.org/10.1016/j.scriptamat.2017.07.017

    Article  CAS  Google Scholar 

  13. Owen, W.S., Grujicic, M.: Strain aging of austenitic Hadfield manganese steel. Acta Mater. 47(1), 111–126 (1998). https://doi.org/10.1016/S1359-6454(98)00347-4

    Article  Google Scholar 

  14. Lee, S.-J., Kim, J., Kane, S.N., Cooman, B.C.D.: On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater. 59(17), 6809–6819 (2011). https://doi.org/10.1016/j.actamat.2011.07.040

    Article  CAS  Google Scholar 

  15. Koyama, M., Akiyama, E., Tsuzaki, K.: Hydrogen-induced delayed fracture of a Fe-22Mn-0.6C steel pre-strained at different strain rates. Scr. Mater. 66(11), 947–950 (2012). https://doi.org/10.1016/j.scriptamat.2012.02.040

  16. Koyama, M., Akiyama, E., Tsuzaki, K.: Effects of static and dynamic strain aging on hydrogen embrittlement in TWIP steels containing Al. ISIJ Int. 53(7), 1268–1274 (2013). https://doi.org/10.2355/isi**ternational.53.1268

    Article  CAS  Google Scholar 

  17. Michler, T., San Marchi, C., Naumann, J., Weber, S., Martin, M.: Hydrogen environment embrittlement of stable austenitic steels. Int. J. Hydr. Energy 37(21), 16231–16246 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.071

    Article  CAS  Google Scholar 

  18. Koyama, M., Akiyama, E., Lee, Y.-K., Raabe, D., Tsuzaki, K.: Overview of hydrogen embrittlement in high-Mn steels. Int. J. Hydr. Energy 42(17), 12706–12723 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.214

    Article  CAS  Google Scholar 

  19. Tomota, Y., **a, Y., Inoue, K.: Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels. Acta Mater. 46(5), 1577–1587 (1998). https://doi.org/10.1016/S1359-6454(97)00350-9

    Article  CAS  Google Scholar 

  20. Habib, K., Koyama, M., Tsuchiyama, T., Noguchi, H.: Visualization of dislocations through electron channeling contrast imaging at fatigue crack tip, interacting with pre-existing dislocations. Mater. Res. Lett. 6(1), 61–66 (2018). https://doi.org/10.1080/21663831.2017.1392370

    Article  CAS  Google Scholar 

  21. Koyama, M., Habib, K., Masumura, T., Tsuchiyama, T., Noguchi, H.: Gaseous hydrogen embrittlement of a Ni-free austenitic stainless steel containing 1 mass% nitrogen: effects of nitrogen-enhanced dislocation planarity. Int. J. Hydr. Energy 45(16), 10209–10218 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.014

    Article  CAS  Google Scholar 

  22. Michler, T., Naumann, J.: Hydrogen embrittlement of Cr-Mn-N-austenitic stainless steels. Int. J. Hydr. Energy 35(3), 1485–1492 (2010). https://doi.org/10.1016/j.ijhydene.2009.10.050

    Article  CAS  Google Scholar 

  23. Karaman, I., Sehitoglu, H., Maier, H.J., Chumlyakov, Y.I.: Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen. Acta Mater. 49(19), 3919–3933 (2001). https://doi.org/10.1016/S1359-6454(01)00296-8

    Article  CAS  Google Scholar 

  24. Oda, K., Kondo, N., Shibata, K.: X-ray absorption fine structure analysis of interstitial (C, N)-substitutional (Cr) complexes in austenitic stainless steels. ISIJ Int. 30(8), 625–631 (1990). https://doi.org/10.2355/isi**ternational.30.625

    Article  CAS  Google Scholar 

  25. Koyama, M., Sawaguchi, T., Tsuzaki, K.: Overview of dynamic strain aging and associated phenomena in fe-mn-c austenitic steels. ISIJ Int. 58(8), 1383–1395 (2018). https://doi.org/10.2355/isi**ternational.ISIJINT-2018-237

  26. Koyama, M., Sawaguchi, T., Lee, T., Lee, C.S., Tsuzaki, K.: Work hardening associated with \(\rm {\varepsilon }\)-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels. Mater. Sci. Eng. A 528(24), 7310–7316 (2011). https://doi.org/10.1016/j.msea.2011.06.011

  27. Oh, S.-K., Kilic, M.E., Seol, J.-B., Hong, J.-S., Soon, A., Lee, Y.-K.: The mechanism of dynamic strain aging for type A serrations in tensile flow curves of Fe-18Mn-0.55C (wt.%) twinning-induced plasticity steel. Acta Mater. 188, 366–375 (2020). https://doi.org/10.1016/j.actamat.2020.02.020

  28. Canadinc, D., Efstathiou, C., Sehitoglu, H.: On the negative strain rate sensitivity of Hadfield steel. Scr. Mater. 59(10), 1103–1106 (2008). https://doi.org/10.1016/j.scriptamat.2008.07.027

    Article  CAS  Google Scholar 

  29. Chen, L., Kim, H.-S., Kim, S.-K., De Cooman, B.C.: Localized Deformation due to Portevin–LeChatelier Effect in 18Mn & ndash;0.6C TWIP austenitic steel. ISIJ Int. 47(12), 1804–1812 (2007). https://doi.org/10.2355/isi**ternational.47.1804

  30. Renard, K., Ryelandt, S., Jacques, P.J.: Characterisation of the Portevin-Le Châtelier effect affecting an austenitic TWIP steel based on digital image cor-relation. Mater. Sci. Eng. A 527(12), 2969–2977 (2010). https://doi.org/10.1016/j.msea.2010.01.037

  31. Yu, H.-Y., Lee, S.-M., Nam, J.-H., Lee, S.-J., Fabrègue, D., Park, M.-h., Tsuji, N., Lee, Y.-K.: Post-uniform elongation and tensile fracture mechanisms of Fe-18Mn-0.6C-xAl twinning-induced plasticity steels. Acta Mater. 131, 435–444 (2017). https://doi.org/10.1016/j.actamat.2017.04.011

  32. Najam, H., Koyama, M., Bal, B., Akiyama, E., Tsuzaki, K.: Strain rate and hydrogen effects on crack growth from a notch in a Fe-high-Mn steel containing 1.1 wt% solute carbon. Int. J. Hydr. Energy 45(1), 1125–1139 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.227

  33. Hutchinson, B., Ridley, N.: On dislocation accumulation and work hardening in Hadfield steel. Scr. Mater. 55(4), 299–302 (2006). https://doi.org/10.1016/j.scriptamat.2006.05.002

    Article  CAS  Google Scholar 

  34. Hordon, M.J., Averbach, B.L.: X-ray measurements of dislocation density in deformed Copper and Aluminum single crystals. Acta Metall. 9(3), 237–246 (1961). https://doi.org/10.1016/0001-6160(61)90073-6

    Article  CAS  Google Scholar 

  35. Glarebrough, L.M., Hargreaves, M.E., West, G.W.: The density of dislocations in compressed copper. Acta Metall. 5(12), 738–740 (1957). https://doi.org/10.1016/0001-6160(57)90076-7

    Article  Google Scholar 

  36. Clarebrough, L.M., Hargreaves, M.E., West, G.W., Head, A.K., Mott, N.F.: The energy stored in fatigued metals. Proc. R. Soc. Lond. A Math Phys. Sci. 242(1229), 160–166 (1957). https://doi.org/10.1098/rspa.1957.0164

  37. Shintani, T., Murata, Y.: Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction. Acta Mater. 59(11), 4314–4322 (2011). https://doi.org/10.1016/j.actamat.2011.03.055

    Article  CAS  Google Scholar 

  38. Dini, G., Ueji, R., Najafizadeh, A., Monir-Vaghefi, S.M.: Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater. Sci. Eng. A 527(10), 2759–2763 (2010). https://doi.org/10.1016/j.msea.2010.01.033

    Article  CAS  Google Scholar 

  39. Tuğuca, I.B., Koyama, M., Bal, B., Canadinc, D., Akiyama, E., Tsuzaki, K.: High-concentration carbon assists plasticity-driven hydrogen embrittlement in a Fe-high Mn steel with a relatively high stacking fault energy. Mater. Sci. Eng. A 717, 78–84 (2018). https://doi.org/10.1016/j.msea.2018.01.087

    Article  CAS  Google Scholar 

  40. Tuğluca, I.B., Koyama, M., Shimomura, Y., Bal, B., Canadinc, D., Akiyama, E., Tsuzaki, K.: Lowering strain rate simultaneously enhances carbon- and hydrogen-induced mechanical degradation in an Fe-33Mn-1.1C Steel. Metall. Mater. Trans. A 50(3), 1137–1141 (2019). https://doi.org/10.1007/s11661-018-5080-7

  41. Bouaziz, O., Allain, S., Scott, C.P., Cugy, P., Barbier, D.: High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 15(4), 141–168 (2011). https://doi.org/10.1016/j.cossms.2011.04.002

    Article  CAS  Google Scholar 

  42. Chowdhury, P., Canadinc, D., Sehitoglu, H.: On deformation behavior of Fe-Mn based structural alloys. Mater. Sci. Eng. R 122, 1–28 (2017). https://doi.org/10.1016/j.mser.2017.09.002

    Article  Google Scholar 

  43. Liang, Z.Y., Wang, X., Huang, W., Huang, M.X.: Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Mater. 88, 170–179 (2015). https://doi.org/10.1016/j.actamat.2015.01.013

    Article  CAS  Google Scholar 

  44. Koyama, M., Akiyama, E., Sawaguchi, T., Raabe, D., Tsuzaki, K.: Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C austenitic steel. Scr. Mater. 66(7), 459–462 (2012). https://doi.org/10.1016/j.scriptamat.2011.12.015

  45. Koyama, M., Akiyama, E., Tsuzaki, K., Raabe, D.: Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Mater. 61(12), 4607–4618 (2013). https://doi.org/10.1016/j.actamat.2013.04.030

    Article  CAS  Google Scholar 

  46. Ryu, J.H., Kim, S.K., Lee, C.S., Suh, D.-W., Bhadeshia, H.K.D.H.: Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel. Proc. R. Soc. A: Mathematical, Physical and Engineering Sciences 469(2149), 20120458 (2013). https://doi.org/10.1098/rspa.2012.0458

  47. Koyama, M., Bashir, A., Rohwerder, M., Merzlikin, S.V., Akiyama, E., Tsuzaki, K., Raabe, D.: Spatially and kinetically resolved map** of hydrogen in a twinning-induced plasticity steel by use of scanning kelvin probe force microscopy. J. Electrochem. Soc. 162(12), C638–C647 (2015). https://doi.org/10.1149/2.0131512jes

  48. So, K.H., Kim, J.S., Chun, Y.S., Park, K.-T., Lee, Y.-K., Lee, C.S.: Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe-18Mn-1.5Al-0.6C TWIP Steel. ISIJ Int. 49(12), 1952–1959 (2009). https://doi.org/10.2355/isi**ternational.49.1952

  49. Du, Y.A., Ismer, L., Rogal, J., Hickel, T., Neugebauer, J., Drautz, R.: First-principles study on the interaction of H interstitials with grain boundaries in \(\rm {\alpha }\)- and \(\rm {\gamma }\)-Fe. Phys. Rev. B 84(14), 144121 (2011). https://doi.org/10.1103/PhysRevB.84.144121

  50. Mahajan, S., Chin, G.Y.: Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe alloy single crystals. Acta Metall. 21(2), 173–179 (1973). https://doi.org/10.1016/0001-6160(73)90059-X

  51. Rémy, L.: Twin-slip interaction in f.c.c. crystals. Acta Metall. 25(6), 711–714 (1977). https://doi.org/10.1016/0001-6160(77)90013-X

  52. Wang, Y.B., Sui, M.L.: Atomic-scale in situ observation of lattice dislocations passing through twin boundaries. Appl. Phys. Lett. 94(2), 021909 (2009). https://doi.org/10.1063/1.3072801

  53. Bal, B., Koyama, M., Gerstein, G., Maier, H.J., Tsuzaki, K.: Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas. Int. J. Hydr. Energy 41(34), 15362–15372 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.259

    Article  CAS  Google Scholar 

  54. Koyama, M., Rohwerder, M., Tasan, C.C., Bashir, A., Akiyama, E., Takai, K., Raabe, D., Tsuzaki, K.: Recent progress in microstructural hydrogen map** in steels: quantification, kinetic analysis, and multi-scale characterisation. Mater. Sci. Technol. 33(13), 1481–1496 (2017). https://doi.org/10.1080/02670836.2017.1299276

    Article  CAS  Google Scholar 

  55. Masumura, T., Seto, Y., Tsuchiyama, T., Kimura, K.: Work-hardening mechanism in high-nitrogen austenitic stainless steel. Mater. Trans. 61(4), 678–684 (2020). https://doi.org/10.2320/matertrans.H-M2020804

    Article  CAS  Google Scholar 

  56. Terazawa, Y., Ando, T., Tsuchiyama, T., Takaki, S.: Relationship between work hardening behaviour and deformation structure in Ni-free high nitro-gen austenitic stainless steels. Steel Res. Int. 80(7), 473–476 (2009). https://doi.org/10.2374/sri09sp039

    Article  CAS  Google Scholar 

  57. Tsuchiyama, T., Fujii, Y., Terazawa, Y., Nakashima, K., Ando, T., Takaki, S.: Factors inducing intergranular fracture in nickel-free high nitrogen austen-itic stainless steel produced by solution nitriding. ISIJ Int. 48(6), 861–867 (2008). https://doi.org/10.2355/isi**ternational.48.861

    Article  CAS  Google Scholar 

  58. Kubota, S., **a, Y., Tomota, Y.: Work-hardening behavior and evolution of dislocation-microstructures in high-nitrogen bearing austenitic steels. ISIJ Int. 38(5), 474–481 (1998). https://doi.org/10.2355/isi**ternational.38.474

    Article  CAS  Google Scholar 

  59. Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., Tsau, C.-H., Chang, S.-Y.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  60. Cantor, B.: Multicomponent and high entropy alloys. Entropy 16(9), 4749 (2014)

    Google Scholar 

  61. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153–1158 (2014). https://doi.org/10.1126/science.1254581

  62. Yao, M.J., Pradeep, K.G., Tasan, C.C., Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72–73, 5–8 (2014). https://doi.org/10.1016/j.scriptamat.2013.09.030

    Article  CAS  Google Scholar 

  63. Ding, J., Yu, Q., Asta, M., Ritchie, R.O.: Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl. Acad. Sci. USA 115(36), 8919–8924 (2018). https://doi.org/10.1073/pnas.1808660115

    Article  CAS  Google Scholar 

  64. Zhang, R., Zhao, S., Ding, J., Chong, Y., Jia, T., Ophus, C., Asta, M., Ritchie, R.O., Minor, A.M.: Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581(7808), 283–287 (2020). https://doi.org/10.1038/s41586-020-2275-z

    Article  CAS  Google Scholar 

  65. Nygren, K.E., Bertsch, K.M., Wang, S., Bei, H., Nagao, A., Robertson, I.M.: Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy. Curr. Opin. Solid State Mater. Sci. 22(1), 1–7 (2018). https://doi.org/10.1016/j.cossms.2017.11.002

    Article  CAS  Google Scholar 

  66. Ichii, K., Koyama, M., Tasan, C.C., Tsuzaki, K.: Comparative study of hydro-gen embrittlement in stable and metastable high-entropy alloys. Scr. Mater. 150, 74–77 (2018). https://doi.org/10.1016/j.scriptamat.2018.03.003

    Article  CAS  Google Scholar 

  67. Zhao, Y., Lee, D.-H., Seok, M.-Y., Lee, J.-A., Phaniraj, M.P., Suh, J.-Y., Ha, H.-Y., Kim, J.-Y., Ramamurty, U., Jang, J.-i.: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scr. Mater. 135, 54–58 (2017). https://doi.org/10.1016/j.scriptamat.2017.03.029

  68. Ichii, K., Koyama, M., Tasan, C.C., Tsuzaki, K.: Localized plasticity and associated cracking in stable and metastable high-entropy alloys pre-charged with hydrogen. Procedia Struct. Integr. 13, 716–721 (2018). https://doi.org/10.1016/j.prostr.2018.12.119

    Article  Google Scholar 

  69. Park, I.-J., Lee, S.-M., Jeon, H.-h., Lee, Y.-K.: The advantage of grain refinement in the hydrogen embrittlement of Fe-18Mn-0.6C twinning-induced plasticity steel. Corros. Sci. 93, 63–69 (2015). https://doi.org/10.1016/j.corsci.2015.01.012

  70. Zan, N., Ding, H., Guo, X., Tang, Z., Bleck, W.: Effects of grain size on hydrogen embrittlement in a Fe-22Mn-0.6C TWIP steel. Int. J. Hydr. Energy 40(33), 10687–10696 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.112

  71. Koyama, M., Ichii, K., Tsuzaki, K.: Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy. Int. J. Hydr. Energy 44(31), 17163–17167 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by JSPS KAKENHI (JP16H06365 and JP20H02457) and the Japan Science and Technology Agency (JST) (Grant no. 20100113) under the Industry-Academia Collaborative R&D Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomichi Koyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koyama, M. et al. (2021). Potential Effects of Short-Range Order on Hydrogen Embrittlement of Stable Austenitic Steels—A Review. In: Polyanskiy, V.A., Belyaev, A.K. (eds) Advances in Hydrogen Embrittlement Study. Advanced Structured Materials, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-66948-5_1

Download citation

Publish with us

Policies and ethics

Navigation