Sustainable and Affordable Technologies for Food Processing

  • Chapter
  • First Online:
Agri-food and Forestry Sectors for Sustainable Development

Part of the book series: Sustainable Development Goals Series ((SDGS))

  • 332 Accesses

Abstract

Adopting the most effective, efficient, and green food processing methods and related technologies represents an important step toward the sustainability of the food supply chain, in particular concerning plant-based food and vegetable beverages. The major challenges related to achieving microbiological safety and extended shelf life while preserving healthy properties and enhancing the bioavailability of essential micronutrients are discussed. This chapter illustrates successful application cases of controlled hydrodynamic cavitation (HC) methods and technologies, applied to brewing, cereal-based, legume-based, and oilseed-based beverages; fruit juices; as well as milk and other dairy products and by-products. HC green processes allow higher extraction rates of bioactive compounds, superior microbiological and physicochemical stability, extended shelf life, and higher bioavailability, all this comparatively more effectively and efficiently. The advances in the use of plant extracts as sources of important natural antioxidants in food, to prevent lipid and protein oxidation processes, as well as natural broad-spectrum antimicrobial agents, are also discussed, with particular focus on edible coatings and antimicrobial packaging, aimed at both food security and reduction of food waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wootton-Beard, P.C., Ryan, L.: Improving public health?: the role of antioxidant-rich fruit and vegetable beverages. Food Res. Int. 44, 3135–3148 (2011). https://doi.org/10.1016/j.foodres.2011.09.015

    Article  Google Scholar 

  2. Albanese, L., Ciriminna, R., Meneguzzo, F., Pagliaro, M.: Innovative beer-brewing of typical, old and healthy wheat varieties to boost their spreading. J. Clean. Prod. 171, 297–311 (2018). https://doi.org/10.1016/j.jclepro.2017.10.027

    Article  Google Scholar 

  3. Tang, G.Y., Meng, X., Li, Y., Zhao, C.N., Liu, Q., Li, H.: Bin Effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients. 9, 857 (2017). https://doi.org/10.3390/nu9080857.

    Article  Google Scholar 

  4. Zhang, Y.J., Gan, R.Y., Li, S., Zhou, Y., Li, A.N., Xu, D.P., Li, H.B., Kitts, D.D.: Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 20, 21138–21156 (2015). https://doi.org/10.3390/molecules201219753.

    Article  CAS  Google Scholar 

  5. Shahidi, F., Ambigaipalan, P.: Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects - a review. J. Funct. Foods. 18, 820–897 (2015)

    Article  CAS  Google Scholar 

  6. Veiga, M., Costa, E.M., Silva, S., Pintado, M.: Impact of plant extracts upon human health: a review. Crit. Rev. Food Sci. Nutr. 60, 873–886 (2020). https://doi.org/10.1080/10408398.2018.1540969

    Article  CAS  Google Scholar 

  7. Marques Jucá, M., Mauricio Sales Cysne Filho, F., Cunha de Almeida, J., da Silva Mesquita, D., Rodrigues de Moraes Barriga, J., Cilene Ferreira Dias, K., Matias Barbosa, T., Costa Vasconcelos, L., Kalyne Almeida Moreira Leal, L., Eduardo Ribeiro, J., Maria Mendes Vasconcelos, S., ercia Marques Juc, M., essica Rodrigues de Moraes Barriga, J., atia Cilene Ferreira, D.K., Eduardo Ribeiro Hon orio unior, J.J., Maria Mendes Vasconcelos, A.: Flavonoids: biological activities and therapeutic potential. Nat. Prod. Res. 34, 692–705 (2020). https://doi.org/10.1080/14786419.2018.1493588.

  8. Laus, M.N., Soccio, M., Alfarano, M., Pasqualone, A., Lenucci, M.S., Di Miceli, G., Pastore, D.: Different effectiveness of two pastas supplemented with either lipophilic or hydrophilic/phenolic antioxidants in affecting serum as evaluated by the novel antioxidant/oxidant balance approach. Food Chem. 221, 278–288 (2017). https://doi.org/10.1016/j.foodchem.2016.10.050.

    Article  CAS  Google Scholar 

  9. Soccio, M., Laus, M.N., Alfarano, M., Dalfino, G., Panunzio, M.F., Pastore, D.: Antioxidant/oxidant balance as a novel approach to evaluate the effect on serum of long-term intake of plant antioxidant-rich foods. J. Funct. Foods. 40, 778–784 (2018). https://doi.org/10.1016/j.jff.2017.12.012.

    Article  CAS  Google Scholar 

  10. Domínguez Avila, J.A., Wall Medrano, A., Ruiz Pardo, C.A., Montalvo González, E., González Aguilar, G.A.: Use of nonthermal technologies in the production of functional beverages from vegetable ingredients to preserve heat-labile phytochemicals. J. Food Process. Preserv. 42 (2018). https://doi.org/10.1111/jfpp.13506

  11. Butu, M., Rodino, S.: Fruit and vegetable-based beverages—nutritional properties and health benefits. Nat. Beverages, 303–338 (2019). https://doi.org/10.1016/b978-0-12-816689-5.00011-0

  12. Lodhi, S., Vadnere, G.P.: Health-promoting ingredients in beverages. In: Value-Added Ingredients and Enrichments of Beverages, pp. 37–61 (2019). https://doi.org/10.1016/b978-0-12-816687-1.00002-3

    Chapter  Google Scholar 

  13. Grand View Research Global Fruit and Vegetable Juice Market Research Report, 2018-2025 Available online: https://www.grandviewresearch.com/industry-analysis/fruit-vegetable-juice-market. Accessed on 10 Jan 2019.

  14. Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., Chhikara, N.: Potential non-dairy probiotic products – a healthy approach. Food Biosci. 21, 80–89 (2018). https://doi.org/10.1016/j.fbio.2017.12.003.

  15. Fernandes, C.G., Sonawane, S.K., Arya, S.S.: Cereal based functional beverages: a review. J. Microbiol. Biotechnol. Food Sci. 8, 914–919 (2018). https://doi.org/10.15414/jmbfs.2018-19.8.3.914-919

    Article  CAS  Google Scholar 

  16. Corbo, M.R., Bevilacqua, A., Petruzzi, L., Casanova, F.P., Sinigaglia, M.: Functional beverages: the emerging side of functional foods: commercial trends, research, and health implications. Compr. Rev. Food Sci. Food Saf. 13, 1192–1206 (2014). https://doi.org/10.1111/1541-4337.12109

    Article  CAS  Google Scholar 

  17. Carpenter, J., Badve, M., Rajoriya, S., George, S., Saharan, V.K., Pandit, A.B.: Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Rev. Chem. Eng. 33, 433–468 (2017). https://doi.org/10.1515/revce-2016-0032

    Article  CAS  Google Scholar 

  18. Albanese, L., Meneguzzo, F.: Hydrodynamic cavitation-assisted processing of vegetable beverages: review and the case of beer-brewing. In: Grumezescu, A.M., Holban, A.M. (eds.) Production and Management of Beverages, pp. 211–257 ISBN 978-0-12-815260-7. Woodhead Publishing (2019)

    Google Scholar 

  19. Arya, S.S., Sawant, O., Sonawane, S.K., Show, P.L., Waghamare, A., Hilares, R., Dos Santos, J.C.: Novel, nonthermal, energy efficient, industrially scalable hydrodynamic cavitation–applications in food processing. Food Rev. Int. 36, 668–691 (2019). https://doi.org/10.1080/87559129.2019.1669163

    Article  Google Scholar 

  20. Sethi, S., Tyagi, S.K., Anurag, R.K.: Plant-based milk alternatives an emerging segment of functional beverages: a review. J. Food Sci. Technol. 53, 3408–3423 (2016). https://doi.org/10.1007/s13197-016-2328-3

    Article  CAS  Google Scholar 

  21. Albanese, L., Ciriminna, R., Meneguzzo, F., Pagliaro, M.: Energy efficient inactivation of Saccharomyces cerevisiae via controlled hydrodynamic cavitation. Energy Sci. Eng. 3, 221–238 (2015). https://doi.org/10.1002/ese3.62

    Article  CAS  Google Scholar 

  22. Zevnik, J., Dular, M.: Cavitation bubble interaction with a rigid spherical particle on a microscale. Ultrason. Sonochem., 105252 (2020). https://doi.org/10.1016/J.ULTSONCH.2020.105252.

  23. Meneguzzo, F., Albanese, L., Zabini, F.: Hydrodynamic cavitation in beer and other beverage processing. In: Innovative Food Processing Technologies: a Comprehensive Review, pp. 369–394. Elsevier, Amsterdam (2021)

    Chapter  Google Scholar 

  24. Satanina, V., Kalt, W., Astatkie, T., Havard, P., Martynenko, A.: Comparison of anthocyanin concentration in blueberries processed using hydrothermodynamic technology and conventional processing technologies. J. Food Process Eng. 37, 609–618 (2014). https://doi.org/10.1111/jfpe.12117

    Article  CAS  Google Scholar 

  25. Martynenko, A., Chen, Y.: Degradation kinetics of total anthocyanins and formation of polymeric color in blueberry hydrothermodynamic (HTD) processing. J. Food Eng. 171, 44–51 (2016). https://doi.org/10.1016/j.jfoodeng.2015.10.008

    Article  CAS  Google Scholar 

  26. Chen, Y., Martynenko, A.: Storage stability of cranberry puree products processed with hydrothermodynamic (HTD) technology. LWT - Food Sci. Technol. 79, 543–553 (2017). https://doi.org/10.1016/j.lwt.2016.10.060.

    Article  CAS  Google Scholar 

  27. Rodríguez-Bernal, J.M., Herrera-Ardila, Y.M., Olivares-Tenorio, M.L., Leyva-Reyes, M.F., Klotz-Ceberio, B.F.: Determination of antioxidant capacity in blackberry (Rubus glaucus) jam processed by hydrotermodynamic cavitation compared with traditional technology. DYNA. 87, 118–125 (2020). https://doi.org/10.15446/dyna.v87n215.84521

    Article  Google Scholar 

  28. Lohani, U.C., Muthukumarappan, K., Meletharayil, G.H.: Application of hydrodynamic cavitation to improve antioxidant activity in sorghum flour and apple pomace. Food Bioprod. Process. 100, 335–343 (2016). https://doi.org/10.1016/j.fbp.2016.08.005

    Article  CAS  Google Scholar 

  29. Ciriminna, R., Albanese, L., Di Stefano, V., Delisi, R., Avellone, G., Meneguzzo, F., Pagliaro, M.: Beer produced via hydrodynamic cavitation retains higher amounts of xanthohumol and other hops prenylflavonoids. LWT - Food Sci. Technol. 91, 160–167 (2018). https://doi.org/10.1016/j.lwt.2018.01.037.

    Article  CAS  Google Scholar 

  30. Albanese, L., Bonetti, A., D’Acqui, L.P., Meneguzzo, F., Zabini, F.: Affordable production of antioxidant aqueous solutions by hydrodynamic cavitation processing of silver fir (Abies Alba Mill.) needles. Foods. 8, 65 (2019). https://doi.org/10.3390/foods8020065.

    Article  CAS  Google Scholar 

  31. Veiga, M., Costa, E.M., Voss, G., Silva, S., Pintado, M.: Engineering and health benefits of fruits and vegetables beverages. Non-alcoholic Beverages Vol. 6. Sci. Beverages, 363–405 (2019). https://doi.org/10.1016/B978-0-12-815270-6.00012-8

  32. Kumar, S., Pandey, A.K.: Chemistry and biological activities of flavonoids: an overview. Sci. World J., 162750 (2013). https://doi.org/10.1155/2013/162750.

  33. Sansone, F., Rossi, A., Gaudio, P., Simone, F., Aquino, R.P., Lauro, M.R.: Hesperidin gastroresistant microparticles by spray-drying: preparation, characterization, and dissolution profiles. AAPS PharmSciTech. 10, 391–401 (2009). https://doi.org/10.1208/s12249-009-9219-0.

    Article  CAS  Google Scholar 

  34. Meneguzzo, F., Ciriminna, R., Zabini, F., Pagliaro, M.: Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. PRO. 8, 549 (2020). https://doi.org/10.3390/PR8050549

    Article  CAS  Google Scholar 

  35. Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., Elez-Martínez, P.: Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr. 58 (2018). https://doi.org/10.1080/10408398.2017.1331200

  36. Kanaze, F., Kokkalu, E., Niopas, I., Georgarakis, M., Stergious, A., Bikiaris, D.: Thermal analysis study of flavonoid solid dispersions having enhanced solubility. J. Therm. Anal. Calorim. 83, 283–290 (2006). https://doi.org/10.1007/s10973-005-6989-9.

    Article  CAS  Google Scholar 

  37. Kaderides, K., Mourtzinos, I., Goula, A.M.: Stability of pomegranate peel polyphenols encapsulated in orange juice industry by-product and their incorporation in cookies. Food Chem. 310 (2020). https://doi.org/10.1016/j.foodchem.2019.125849

  38. Martynenko, A., Astatkie, T., Satanina, V.: Novel hydrothermodynamic food processing technology. J. Food Eng. 152, 8–16 (2015). https://doi.org/10.1016/j.jfoodeng.2014.11.016

    Article  CAS  Google Scholar 

  39. Li, F., Chen, G., Zhang, B., Fu, X.: Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. Food Res. Int. 100, 19–30 (2017). https://doi.org/10.1016/j.foodres.2017.08.035

    Article  CAS  Google Scholar 

  40. Albanese, L., Ciriminna, R., Meneguzzo, F., Pagliaro, M.: Beer-brewing powered by controlled hydrodynamic cavitation: theory and real-scale experiments. J. Clean. Prod. 142, 1457–1470 (2017). https://doi.org/10.1016/j.jclepro.2016.11.162

    Article  CAS  Google Scholar 

  41. CAVIBEER | CNR & Bysea S.r.l. Cavibeer Available online: http://www.cavibeer.com.

  42. Meneguzzo, F., Albanese, L.: A method and relative apparatus for the production of beer 2016, Patent No. WO/2018/029715.

    Google Scholar 

  43. de Gaetano, G., Costanzo, S., Di Castelnuovo, A., Badimon, L., Bejko, D., Alkerwi, A., Chiva-Blanch, G., Estruch, R., La Vecchia, C., Panico, S., Pounis, G., Sofi, F., Stranges, S., Trevisan, M., Ursini, F., Cerletti, C., Donati, M.B., Iacoviello, L.: Effects of moderate beer consumption on health and disease: a consensus document. Nutr. Metab. Cardiovasc. Dis. 26, 443–467 (2016). https://doi.org/10.1016/j.numecd.2016.03.007.

    Article  Google Scholar 

  44. Piazzon, A., Forte, M., Nardini, M.: Characterization of phenolics content and antioxidant activity of different beer types. J. Agric. Food Chem. 58, 10677–10683 (2010). https://doi.org/10.1021/jf101975q

    Article  CAS  Google Scholar 

  45. Queirós, R.B., Tafulo, P.A.R., Sales, F., Assessing, M.G.F.: Comparing the total antioxidant capacity of commercial beverages: application to beers, wines, waters and soft drinks using TRAP, TEAC and FRAP methods. Comb. Chem. High Throughput Screen. 16, 22–31 (2013). https://doi.org/10.2174/1386207311316010004.

    Article  Google Scholar 

  46. Stevens, J.F., Page, J.E.: Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry. 65, 1317–1330 (2004). https://doi.org/10.1016/j.phytochem.2004.04.025

    Article  CAS  Google Scholar 

  47. Deswal, A., Deora, N.S., Mishra, H.N.: Grain-based beverages. In: Aguiló-Aguayo, I., Plaza, L. (eds.) Innovative Technologies in Beverage Processing, pp. 217–247 ISBN 9781118929346. Wiley, Chichester, UK (2017)

    Chapter  Google Scholar 

  48. Jeske, S., Zannini, E., Arendt, E.K.: Past, present and future: the strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int. 110, 42–51 (2018). https://doi.org/10.1016/j.foodres.2017.03.045

    Article  CAS  Google Scholar 

  49. Chalupa-Krebzdak, S., Long, C.J., Bohrer, B.M.: Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 87, 84–92 (2018). https://doi.org/10.1016/j.idairyj.2018.07.018.

    Article  CAS  Google Scholar 

  50. Priyadarshini, A., Priyadarshini, A.: Market dimensions of the fruit juice industry. In: Rajauria, G., Tiwari, B.K. (eds.) Fruit Juices, pp. 15–32 ISBN 978-0-12-802230-6. Academic Press, San Diego (2018)

    Chapter  Google Scholar 

  51. Jeske, S., Zannini, E., Arendt, E.K.: Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods Hum. Nutr. 72, 26–33 (2017). https://doi.org/10.1007/s11130-016-0583-0

    Article  CAS  Google Scholar 

  52. Mäkinen, O.E., Wanhalinna, V., Zannini, E., Arendt, E.K.: Foods for special dietary needs: non-dairy plant based milk substitutes and fermented dairy type products. Crit. Rev. Food Sci. Nutr. 56, 339–349 (2016). https://doi.org/10.1080/10408398.2012.761950

    Article  CAS  Google Scholar 

  53. Önning, G., Åkesson, B., Öste, R., Lundquist, I.: Effects of consumption of oat milk, soya milk, or cow’s milk on plasma lipids and antioxidative capacity in healthy subjects. Ann. Nutr. Metab. 42, 211–220 (1998). https://doi.org/10.1159/000012736

    Article  Google Scholar 

  54. Conidi, C., Castro-Muñoz, R., Cassano, A.: Membrane-based operations in the fruit juice processing industry: a review. Beverages. 6, 18 (2020). https://doi.org/10.3390/beverages6010018

    Article  CAS  Google Scholar 

  55. Weber, F., Larsen, L.R.: Influence of fruit juice processing on anthocyanin stability. Food Res. Int. 100, 354–365 (2017). https://doi.org/10.1016/j.foodres.2017.06.033

    Article  CAS  Google Scholar 

  56. Jiménez-Sánchez, C., Lozano-Sánchez, J., Segura-Carretero, A., Fernández-Gutiérrez, A.: Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: techniques and applications. Crit. Rev. Food Sci. Nutr. 57, 501–523 (2017). https://doi.org/10.1080/10408398.2013.867828.

    Article  Google Scholar 

  57. Katariya, P., Arya, S.S., Pandit, A.B.: Novel non-thermal hydrodynamic cavitation of orange juice: effects on physical properties and stability of bioactive compounds. Innov. Food Sci. Emerg. Technol., 102364 (2020). https://doi.org/10.1016/j.ifset.2020.102364.

  58. Terán Hilares, R., dos Santos, J.G., Shiguematsu, N.B., Ahmed, M.A., da Silva, S.S., Santos, J.C.: Low-pressure homogenization of tomato juice using hydrodynamic cavitation technology: effects on physical properties and stability of bioactive compounds. Ultrason. Sonochem. 54, 192–197 (2019). https://doi.org/10.1016/j.ultsonch.2019.01.039.

    Article  Google Scholar 

  59. Fan, L., Martynenko, A., Doucette, C., Hughes, T., Fillmore, S.: Microbial quality and shelf life of Blueberry Purée developed using cavitation technology. J. Food Sci. 83, 732–739 (2018). https://doi.org/10.1111/1750-3841.14073.

    Article  CAS  Google Scholar 

  60. Ramisetty, K.A., Pandit, A.B., Gogate, P.R.: Novel approach of producing oil in water emulsion using hydrodynamic cavitation reactor. Ind. Eng. Chem. Res. 53, 16508–16515 (2014). https://doi.org/10.1021/ie502753d

    Article  CAS  Google Scholar 

  61. Carpenter, J., George, S., Saharan, V.K.: Low pressure hydrodynamic cavitating device for producing highly stable oil in water emulsion: effect of geometry and cavitation number. Chem. Eng. Process. - Process Intensif. 116, 97–104 (2017). https://doi.org/10.1016/j.cep.2017.02.013

    Article  CAS  Google Scholar 

  62. Meneguzzo, F., Brunetti, C., Fidalgo, A., Ciriminna, R., Delisi, R., Albanese, L., Zabini, F., Gori, A., dosS Nascimento, L.B., De Carlo, A., Ferrini, F., Ilharco, L.M., Pagliaro, M.: Real-scale integral valorization of waste orange peel via hydrodynamic cavitation. PRO. 7 (2019). https://doi.org/10.3390/pr7090581

  63. Liu, R.H.: Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 78, 517S–520S (2003). https://doi.org/10.1093/ajcn/78.3.517s

    Article  CAS  Google Scholar 

  64. Fonteles, T.V., Rodrigues, S.: Prebiotic in fruit juice: processing challenges, advances, and perspectives. Curr. Opin. Food Sci. 22, 55–61 (2018). https://doi.org/10.1016/j.cofs.2018.02.001.

    Article  Google Scholar 

  65. Crudo, D., Bosco, V., Cavaglià, G., Mantegna, S., Battaglia, L., Cravotto, G.: Process intensification in the food industry: hydrodynamic and acoustic cavitation in fresh milk treatment. Agro Food Ind Hi Tech. 25, 55 (2014)

    CAS  Google Scholar 

  66. Meletharayil, G.H., Metzger, L.E., Patel, H.A.: Influence of hydrodynamic cavitation on the rheological properties and microstructure of formulated Greek-style yogurts. J. Dairy Sci. 99, 8537–8548 (2016). https://doi.org/10.3168/jds.2015-10774.

    Article  CAS  Google Scholar 

  67. Li, K., Woo, M.W., Patel, H., Metzger, L., Selomulya, C.: Improvement of rheological and functional properties of milk protein concentrate by hydrodynamic cavitation. J. Food Eng. 221, 106–113 (2018). https://doi.org/10.1016/j.jfoodeng.2017.10.005

    Article  CAS  Google Scholar 

  68. Pathania, S., Ho, Q.T., Hogan, S.A., McCarthy, N., Tobin, J.T.: Applications of hydrodynamic cavitation for instant rehydration of high protein milk powders. J. Food Eng. 225, 18–25 (2018). https://doi.org/10.1016/j.jfoodeng.2018.01.005

    Article  CAS  Google Scholar 

  69. Gregersen, S.B., Wiking, L., Metto, D.J., Bertelsen, K., Pedersen, B., Poulsen, K.R., Andersen, U., Hammershøj, M.: Hydrodynamic cavitation of raw milk: effects on microbial inactivation, physical and functional properties. Int. Dairy J. 109, 104790 (2020). https://doi.org/10.1016/j.idairyj.2020.104790.

    Article  CAS  Google Scholar 

  70. Minj, J., Dogra, S.: Significance of fortification of beneficial natural ingredients in milk and milk products. In: Dairy Processing: Advanced Research to Applications, pp. 87–118 ISBN (2020). https://doi.org/10.1007/9789811

    Chapter  Google Scholar 

  71. Bouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., Oulahal, N.: Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 99, 1457–1474 (2019). https://doi.org/10.1002/jsfa.9357

    Article  CAS  Google Scholar 

  72. Oswell, N.J., Thippareddi, H., Pegg, R.B.: Practical use of natural antioxidants in meat products in the U.S.: a review. Meat Sci. 145, 469–479 (2018). https://doi.org/10.1016/j.meatsci.2018.07.020.

    Article  CAS  Google Scholar 

  73. Pavelková, A., Bobko, M., Haščík, P., Kačániová, M., Tkáčová, J.: Oxidative stability of chicken thigh meat after treatment of Abies alba essential oil. Potravinarstvo. 9, 451–457 (2015). https://doi.org/10.5219/523

    Article  Google Scholar 

  74. Romanazzi, G., Feliziani, E., Santini, M., Landi, L.: Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biol. Technol. 75, 24–27 (2013). https://doi.org/10.1016/j.postharvbio.2012.07.007

    Article  CAS  Google Scholar 

  75. Boukhatem, M.N.: Scientific findings: the amazing use of essential oils and their related terpenes as natural preservatives to improve the shelf-life of food. Food Sci. Nutr. Technol. 5 (2020). https://doi.org/10.23880/fsnt-16000215

  76. Ritota, M., Manzi, P.: Natural preservatives from plant in cheese making. Animals. 10 (2020). https://doi.org/10.3390/ani10040749

  77. Efenberger-Szmechtyk, M., Nowak, A., Czyzowska, A.: Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. (2020). https://doi.org/10.1080/10408398.2020.1722060

  78. Baptista, R.C., Horita, C.N., Sant’Ana, A.S.: Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: a review. Food Res. Int. 127, 108762 (2020)

    Article  Google Scholar 

  79. Munteanu, S.B., Vasile, C.: Vegetable additives in food packaging polymeric materials. Polymers (Basel). 12, 28 (2020)

    Article  CAS  Google Scholar 

  80. Mohamed, S.A., El-Sakhawy, M., Abdel-Monem El-Sakhawy, M.: Polysaccharides, protein and lipid-based natural edible films in food packaging: a review. Carbohydr Polym. J. 238 (2020). https://doi.org/10.1016/j.carbpol.2020.116178.

  81. Ju, J., Chen, X., **e, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H., Yao, W.: Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci. Technol. 92 (2019). https://doi.org/10.1016/j.tifs.2019.08.005

  82. Jafarzadeh, S., Jafari, S.M., Salehabadi, A., Nafchi, A.M., Seeta, U., Kumar, U., Khalil, H.P.S.A.: Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci. Technol. 100 (2020). https://doi.org/10.1016/j.tifs.2020.04.017.

  83. Lyu, X., Lee, J., Chen, W.N.: Potential natural food preservatives and their sustainable production in yeast: terpenoids and polyphenols. J. Agric. Food Chem. 67, 4397–4417 (2019). https://doi.org/10.1021/acs.jafc.8b07141

    Article  CAS  Google Scholar 

  84. Jamróz, E., Kopel, P.: Polysaccharide and protein films with antimicrobial/antioxidant activity in the food industry: a review. Polymers (Basel). 12, 1289 (2020). https://doi.org/10.3390/polym12061289.

    Article  Google Scholar 

  85. Chaparro-Hernández, S., Ruiz-Cruz, S., Márquez-Ríos, E., de Ornelas-Paz, J., Del-Toro-Sánchez, C. L, Gassos-Ortega, L.E., Ocaño-Higuera, V.M., López-Mata, M.A., Devora-Isiordia, G.E.: Effect of chitosan–tomato plant extract edible coating on the quality, shelf life, and antioxidant capacity of Pork during refrigerated storage. Coatings. 9, 827 (2019). https://doi.org/10.3390/coatings9120827.

    Article  Google Scholar 

  86. Mellinas, C., Ramos, M., Jiménez, A., Garrigós, M.C.: Recent trends in the use of Pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials (Basel). 13, 673 (2020). https://doi.org/10.3390/ma13030673.

    Article  CAS  Google Scholar 

  87. Nisar, T., Wang, Z.C., Yang, X., Tian, Y., Iqbal, M., Guo, Y.: Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 106, 670–680 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.068

    Article  CAS  Google Scholar 

  88. Akhter, R., Masoodi, F.A., Wani, T.A., Rather, S.A.: Functional characterization of biopolymer based composite film: incorporation of natural essential oils and antimicrobial agents. Int. J. Biol. Macromol. 137, 1245–1255 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.214

    Article  CAS  Google Scholar 

  89. Presentato, A., Scurria, A., Albanese, L., Lino, C., Sciortino, M., Pagliaro, M., Zabini, F., Meneguzzo, F., Alduina, R., Nuzzo, D., Ciriminna, R.: Superior antibacterial activity of integral lemon Pectin via hydrodynamic cavitation. Chemistry Open. 9, 628–630 (2020). https://doi.org/10.1002/open.202000076

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meneguzzo, F., Zabini, F. (2021). Sustainable and Affordable Technologies for Food Processing. In: Agri-food and Forestry Sectors for Sustainable Development. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-66284-4_7

Download citation

Publish with us

Policies and ethics

Navigation