Application of Metal Oxide Nanomaterials in Agriculture: Benefit or Bane?

  • Chapter
  • First Online:
Nanomaterial Biointeractions at the Cellular, Organismal and System Levels

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 358 Accesses

Abstract

Nanotechnology has progressed significantly in the past two decades and the use of engineered nanomaterials (ENMs) in industrial applications and commercial products has greatly increased. As a result of this widespread increase in ENM usage both industrially and domestically, concerns about their release and accumulation in the environment has also increased. Direct or indirect exposure and the subsequent accumulation of ENMs in the environment may have significant eco-toxicological effects on plants used as staple foods such as cereals. This in turn will potentially cause human and ecological health issues as a result of soil and plant contamination. A thorough assessment of the environmental risks of ENMs is, therefore, critical. To assess their environmental risks, understanding of ENMs unique properties such as specific surface area, high surface area to volume ratio, and variable surface charge under different environmental condition is necessary.

In this chapter, the effects of the most commonly released metal oxide engineered nanoparticles, primarily nano cerium dioxide (nCeO2, the most produced ENM in improving fuel quality) and nano titanium dioxide (nTiO2, the most produced ENM in consumer goods), on the physiology and productivity of globally important agricultural plant species are reviewed. The propensity for metal oxides to accumulate in these plant tissues is discussed in light of their phytotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agata Tyczewska, E. W., Gracz, J., Kuczynski, J., & Twardowski, T. (2019). Towards food security: Current state and future prospects of Agrobiotechnology. Trends in Biotechnology, 36(12), 11.

    Google Scholar 

  • Andersen, C. P., et al. (2016). Germination and early plant development of ten plant species exposed to TiO2 and CeO2 nanoparticles. Environmental Toxicology and Chemistry, 9999, 1–7.

    Google Scholar 

  • Arruda, S. C. C., et al. (2015). Nanoparticles applied to plant science: A review. Talanta, 131, 693–705.

    Article  PubMed  Google Scholar 

  • Boonyanitipong, P., et al. (2011). Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. International Journal of Bioscience. Biochemistry and Bioinformatics, 1(4), 282.

    Google Scholar 

  • Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10), 1166–1170.

    Article  CAS  PubMed  Google Scholar 

  • Du, W., et al. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13(4), 822–828.

    Google Scholar 

  • Du, W., et al. (2016). Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry, 110, 210.

    Article  PubMed  Google Scholar 

  • Ebbs, S. D., et al. (2016). Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science: Nano, 3, 114.

    CAS  Google Scholar 

  • Engates, K. E., & Shipley, H. J. (2011). Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research, 18(3), 386–395.

    Article  CAS  PubMed  Google Scholar 

  • Esfand, R., & Tomalia, D. A. (2001). Poly (amidoamine)(PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 6(8), 427–436.

    Article  CAS  PubMed  Google Scholar 

  • Farré, M., et al. (2009). Ecotoxicity and analysis of nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry, 393(1), 81–95.

    Article  PubMed  Google Scholar 

  • Feizi, H., et al. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146(1), 101–106.

    Google Scholar 

  • Hernandez-Viezcas, J. A., et al. (2016). Interactions between CeO2 nanoparticles and the desert plant mesquite: A spectroscopy approach. ACS Sustainable Chemistry & Engineering, 4, 1187.

    Google Scholar 

  • Hong, J., et al. (2014). Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environmental Science & Technology, 48(8), 4376–4385.

    Article  CAS  Google Scholar 

  • Hund-Rinke, K., Schlich, K., & Klawonn, T. (2012). Influence of application techniques on the ecotoxicological effects of nanomaterials in soil. Environmental Sciences Europe, 24(12), 1–30.

    Google Scholar 

  • Klaine, S., et al. (2008). Nanomaterials in the environment: Behaviour, fate, bioavialability , and effects. Environmental Toxicology and Chemistry, 27(9), 26.

    Article  Google Scholar 

  • Krug, H. F., & Wick, P. (2011). Nanotoxicology: An interdisciplinary challenge. Angewandte Chemie International Edition, 50(6), 1260–1278.

    Article  CAS  PubMed  Google Scholar 

  • Larue, C., et al. (2011a). Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. in Journal of Physics: Conference Series. IOP Publishing.

    Google Scholar 

  • Larue, C., et al. (2011b). Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. Journal of Physics: Conference Series, 304, 012057/1-012057/7.

    Google Scholar 

  • Larue, C., et al. (2012a). Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. Journal of Toxicology and Environmental Health, Part A, 75(13–15), 722–734.

    Article  CAS  Google Scholar 

  • Larue, C., et al. (2012b). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Science of the Total Environment, 431, 197–208.

    Article  CAS  Google Scholar 

  • Larue, C., et al. (2014). Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. Journal of Hazardous Materials, 273, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Lin, D., & **ng, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Lin, D., & **ng, B. (2008). Root uptake and Phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), 5580–5585.

    Article  CAS  Google Scholar 

  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131–139.

    Article  CAS  Google Scholar 

  • López-Moreno, M. L., et al. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology, 44(19), 7315–7320.

    Article  Google Scholar 

  • Lv, J., et al. (2015). Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environmental Science: Nano, 2(1), 68–77.

    CAS  Google Scholar 

  • Ma, X., et al. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408(16), 3053–3061.

    Article  CAS  Google Scholar 

  • Ma, Y., et al. (2015). Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, 9(2), 262–270.

    Article  CAS  PubMed  Google Scholar 

  • Mccutcheon, S. C., & Schnoor, J. L. (2004). Phytoremediation: Transformation and control of contaminants (Vol. 121). John Wiley & Sons.

    Google Scholar 

  • Mushtaq, Y. K. (2011). Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. Journal of Environmental Science and Health, Part A, 46(14), 1732–1735.

    Article  CAS  Google Scholar 

  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150(1), 5–22.

    Article  CAS  PubMed  Google Scholar 

  • Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015). Agricultural nanotechnologies: What are the current possibilities? Nano Today, 10(2), 124–127.

    Article  CAS  Google Scholar 

  • Peng, C., et al. (2015). Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environmental Pollution, 197, 99–107.

    Article  CAS  PubMed  Google Scholar 

  • Priester, J. H., et al. (2012). Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences, 109(37), E2451–E2456.

    Article  CAS  Google Scholar 

  • Rengel, Z., Batten, G. D., & Crowley, D. E. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research, 60(1–2), 27–40.

    Article  Google Scholar 

  • Rico, C. M., et al. (2013a). Effect of cerium oxide nanoparticles on rice: A study involving the antioxidant defense system and in vivo fluorescence imaging. Environmental Science & Technology, 47(11), 5635–5642.

    Article  CAS  Google Scholar 

  • Rico, C. M., et al. (2013b). Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 61(47), 11278–11285.

    Article  CAS  PubMed  Google Scholar 

  • Rico, C. M., et al. (2014). Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 62(40), 9669–9675.

    Article  CAS  PubMed  Google Scholar 

  • Rosegrant, M. W., & Cline, S. A. (2003). Global food security: Challenges and policies. Science, 302(5652), 1917–1919.

    Article  CAS  PubMed  Google Scholar 

  • Servin, A. D., et al. (2012a). Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environmental Science & Technology, 46(14), 7637–7643.

    Article  CAS  Google Scholar 

  • Servin, A. D., et al. (2012b). Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environmental Science & Technology, 46(14), 7637–7643.

    Article  CAS  Google Scholar 

  • Servin, A. D., et al. (2013). Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environmental Science & Technology, 47(20), 11592–11598.

    Article  CAS  Google Scholar 

  • Shipley, H. J., Engates, K. E., & Guettner, A. M. (2011). Study of iron oxide nanoparticles in soil for remediation of arsenic. Journal of Nanoparticle Research, 13(6), 2387–2397.

    Article  CAS  Google Scholar 

  • Skrabal, S. A., & Terry, C. M. (2002). Distributions of dissolved titanium in porewaters of estuarine and coastal marine sediments. Marine Chemistry, 77(2–3), 109–122.

    Article  CAS  Google Scholar 

  • Song, U., et al. (2013). Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 93, 60–67.

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473–9479.

    Article  CAS  Google Scholar 

  • Tang, Y. J. (2013). et al. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. Journal of Petroleum & Environmental Biotechnology, 2012.

    Google Scholar 

  • Wang, Z., et al. (2012). Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science & Technology, 46(8), 4434–4441.

    Article  CAS  Google Scholar 

  • Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158(2), 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., et al. (2012). Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 6(11), 9943–9950.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., et al. (2015). Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). Journal of Agricultural and Food Chemistry, 63(2), 382–390.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., et al. (2012). Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chemical Engineering Journal, 184, 1–8.

    Article  CAS  Google Scholar 

  • Zheng, L., et al. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1), 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, H., et al. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10(6), 713–717.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Owens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamal, N.N., Duncan, E., Owens, G. (2021). Application of Metal Oxide Nanomaterials in Agriculture: Benefit or Bane?. In: Sharma, N., Sahi, S. (eds) Nanomaterial Biointeractions at the Cellular, Organismal and System Levels. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-65792-5_9

Download citation

Publish with us

Policies and ethics

Navigation