Thermochemical Conversion of Biomass and Upgrading of Bio-Products to Produce Fuels and Chemicals

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability
  • 947 Accesses

Abstract

The considerable growth in energy demands and limited fossil fuel sources, together with environmental concerns, have forced the study of renewable, green and sustainable energy sources. Biomass and its residues can be transformed into valued chemicals and fuels with several thermal conversion processes, which are combustion, gasification and pyrolysis. Combustion is a chemical process that involves the rapid reaction of substances with oxygen, producing heat. Gasification produces synthesis gas at high temperatures (800–1200 °C) to generate heat and power. Pyrolysis has been applied for many years for charcoal formation, while intermediate and fast pyrolysis processes have become of significant interest in recent years. The reason for this interest is that these processes provide different bio-products (bio-oil, synthesis gas and biochar), which can be applied directly in various applications or as a sustainable energy carrier. The present chapter covers an overview of the fundamentals of slow, intermediate and fast pyrolysis, followed by the properties and applicability of the pyrolysis products. This study also identifies the features and advantages of the thermo-catalytic reforming (TCR) process in comparison with other technologies. This report presents a comprehensive literature review of bio-oil production and upgrading methods. In addition, the most common catalysts and supports for different upgrading methods are introduced. Finally, the current pathways for 2-methylfuran (2-MF) formation and the selection of xylose-rich biomass are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Al:

Aluminium

APR:

Aqueous phase reforming

BFB:

Bubbling fluidized bed

C:

Atomic carbon

C2H2:

Acetylene

C2H4:

Ethylene

C2H6:

Ethane

C3H6:

Propylene

C3H8:

Propane

CaO:

Calcium oxide

CeO2:

Cerium dioxide

CFB:

Circulating fluidized bed

CH3OH:

Methanol

CH4:

Methane

CHP:

Combined heat and power

CO:

Carbon monoxide

Co:

Cobalt

CO2:

Carbon dioxide

Cu:

Copper

Ga:

Gallium

H:

Atomic hydrogen

H2:

Hydrogen

H2O:

Water or water vapour

HC:

Hydrocarbon

HDO:

Hydrodeoxygenation

HHV:

Higher heating value

K2O:

Potassium oxide

KOH:

Potassium hydroxide

M:

Monomer

MCM:

Mobil Composition of Matter

MF:

Methylfuran

MgO:

Magnesium oxide

MnO:

Manganese(II) oxide

Mo:

Molybdenum

Mtoe:

Millions of tonnes of oil equivalent

MW:

Molecular weight

MWth:

Megawatts thermal

N2:

Nitrogen

N2O:

Nitrous oxide

Na2CO3:

Sodium carbonate

NaOH:

Sodium hydroxide

Ni:

Nickel

NO:

Nitric oxide

NO2:

Nitrogen dioxide

NOx:

Nitrogen oxides

O:

Atomic oxygen

O2:

Oxygen

O3:

Ozone

OECD:

Organisation for Economic Co-operation and Development

OH:

Hydroxyl radicals

OHS:

Oat hulls

PAH:

Polycyclic aromatic hydrocarbons

PCB:

Polychlorinated biphenyls

Pd:

Palladium

PFD:

Process flow diagram

PPM:

Parts per million

Pt:

Platinum

S:

Seconds

SAPO:

Silicoaluminophosphate

SB:

Sugarcane bagasse

SBA:

Santa Barbara Amorphous

SG:

Second generation

SiO2:

Silica

SO2:

Sulphur dioxide

TCR:

Thermo-catalytic reforming

TiO2:

Titanium dioxide

UK:

United Kingdom

UO2:

Uranium dioxide

USA:

United States of America

Zn:

Zinc

ZrO2:

Zirconia

ZSM:

Zeolite Socony Mobil

References

  1. Gilland B (1995) World-population, economic-growth, and energy demand, 1990–2100—a review of projections. Popul Dev Rev 21(3):507–539

    Article  Google Scholar 

  2. OECD (2016) OECD economic outlook. OECD, Paris

    Google Scholar 

  3. Sieminski A (2014) International energy outlook. Energy information administration (EIA), Washington, DC, p 18

    Google Scholar 

  4. Saladini F, Patrizi N, Pulselli FM, Marchettini N, Bastianoni S (2016) Guidelines for emergy evaluation of first, second and third generation biofuels. Renew Sustain Energy Rev 66:221–227

    Article  Google Scholar 

  5. Easterbrook DJ (2016) Chap. 9—Greenhouse gases. In: Evidence-based climate science, 2nd edn. Elsevier, Amsterdam, pp 163–173

    Chapter  Google Scholar 

  6. Rees RM, Flack S, Maxwell K, Mistry A (2014) Air: Greenhouse gases from Agriculture A2. In: Van Alfen NK (ed) Encyclopedia of agriculture and food systems. Academic Press, Oxford, pp 293–304

    Chapter  Google Scholar 

  7. Yang Z, Wei T, Moore JC, Chou J, Dong W, Dai R et al (2016) A new consumption-based accounting model for greenhouse gases from 1948 to 2012. J Clean Prod 133:368–377

    Article  CAS  Google Scholar 

  8. Bennaceur K, Gielen D, Kerr T, Tam C (2008) CO2 capture and storage: a key carbon abatement option. OECD, Paris

    Google Scholar 

  9. Birol F (2016) Key world energy statistics. International Energy Agency (IEA), Washington, DC

    Google Scholar 

  10. Department for Business EIS (2018) 2018 UK Greenhouse gas emissions, provisional figures. National Statistics, London

    Google Scholar 

  11. Demirbas A (2008) Biodiesel. Springer, Berlin

    Google Scholar 

  12. McCollum D, Yang C (2009) Achieving deep reductions in US transport greenhouse gas emissions: scenario analysis and policy implications. Energy Policy 37(12):5580–5596

    Article  Google Scholar 

  13. Chakraborty S, Aggarwal V, Mukherjee D, Andras K (2012) Biomass to biofuel: a review on production technology. Asia-Pac J Chem Eng 7:S254–SS62

    Article  CAS  Google Scholar 

  14. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37(1):52–68

    Article  CAS  Google Scholar 

  15. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513

    Article  CAS  Google Scholar 

  16. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16

    Article  CAS  Google Scholar 

  17. Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J et al (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    Article  CAS  Google Scholar 

  18. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    Article  CAS  Google Scholar 

  19. Patil V, Tran KQ, Giselrod HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195

    Article  CAS  Google Scholar 

  20. Righelato R, Spracklen DV (2007) Environment—carbon mitigation by biofuels or by saving and restoring forests? Science 317(5840):902

    Article  CAS  Google Scholar 

  21. Danielsen F, Beukema H, Burgess ND, Parish F, Bruhl CA, Donald PF et al (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23(2):348–358

    Article  Google Scholar 

  22. Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28

    Article  CAS  Google Scholar 

  23. Jansen RA (2012) Second generation biofuels and biomass: essential guide for investors, scientists and decision makers. Wiley, Hoboken, NJ

    Book  Google Scholar 

  24. Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    Article  CAS  Google Scholar 

  25. Liew WH, Hassim MH, Ng DKS (2014) Review of evolution, technology and sustainability assessments of biofuel production. J Clean Prod 71:11–29

    Article  CAS  Google Scholar 

  26. Speight JG (2011) The biofuels handbook. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  27. Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39(7):4222–4234

    Article  Google Scholar 

  28. Antizar-Ladislao B, Turrion-Gomez JL (2008) Second-generation biofuels and local bioenergy systems. Biofuels Bioprod Biorefin 2(5):455–469

    Article  CAS  Google Scholar 

  29. Huang C, Zong MH, Wu H, Liu QP (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538

    Article  CAS  Google Scholar 

  30. Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9(7):1342–1360

    Article  CAS  Google Scholar 

  31. Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sustain Energy Rev 30:1035–1046

    Article  CAS  Google Scholar 

  32. Zhu LD, Ketola T (2012) Microalgae production as a biofuel feedstock: risks and challenges. Int J Sust Dev World 19(3):268–274

    Article  Google Scholar 

  33. Demirbaş A (2008) Production of biodiesel from algae oils. Energy Sources Pt A Recov Utilization Environ Eff 31(2):163–168

    Article  CAS  Google Scholar 

  34. Kita K, Okada S, Sekino H, Imou K, Yokoyama S, Amano T (2010) Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Appl Energy 87(7):2420–2423

    Article  CAS  Google Scholar 

  35. Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Petrol Inst 48(5):251–259

    Article  CAS  Google Scholar 

  36. Picazo-Espinosa R, González-López J, Manzanera M (2011) Bioresources for third-generation biofuels. In: Biofuel’s engineering process technology, vol 6, pp 115–133

    Google Scholar 

  37. Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third-generation biofuel. J Chem Technol Biotechnol 86(11):1349–1353

    Article  CAS  Google Scholar 

  38. Khan AA, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90(1):21–50

    Article  CAS  Google Scholar 

  39. Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54(1–3):17–46

    Article  CAS  Google Scholar 

  40. Oral J, Sikula J, Puchyr R, Hajny Z, Stehlik P, Bebar L (2005) Processing of waste from pulp and paper plant. Clean Prod 13(5):509–515

    Article  Google Scholar 

  41. Gopal P, Sivaram N, Barik D (2019) Paper industry wastes and energy generation from wastes. In: Energy from toxic organic waste for heat and power generation. Elsevier, Amsterdam, pp 83–97

    Chapter  Google Scholar 

  42. Quina MJ, Bordado JC, Quinta-Ferreira RM (2011) Air pollution control in municipal solid waste incinerators. In: The impact of air pollution on health, economy, environment and agricultural sources. InTech, Rijeka

    Google Scholar 

  43. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Conver Manage 51(7):1412–1421

    Article  CAS  Google Scholar 

  44. Kamm B, Gruber PR, Kamm M (2000) Biorefineries—industrial processes and products. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  45. Iqbal S, Davies TE, Morgan DJ, Karim K, Hayward JS, Bartley JK et al (2016) Fischer Tropsch synthesis using cobalt based carbon catalysts. Catal Today 275:35–39

    Article  CAS  Google Scholar 

  46. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Cat Sci Technol 4(8):2210–2229

    Article  CAS  Google Scholar 

  47. Mahmoudi H, Jahangiri H, Doustdar O, Akbari N, Wood J, Tsolakis A, et al (2020) Maximizing paraffin to olefin ratio employing simulated nitrogen-rich syngas via Fischer-Tropsch process over Co3O4/SiO2 catalysts. Fuel Processing Technology 208:106477

    Google Scholar 

  48. Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A (2016) Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation. Renew Sustain Energy Rev 53:1333–1347

    Article  CAS  Google Scholar 

  49. Warnecke R (2000) Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy 18(6):489–497

    Article  CAS  Google Scholar 

  50. Heidenreich S, Müller M, Foscolo PU (2016) Chap. 2—fundamental concepts in biomass gasification. In: Heidenreich S, Müller M, Foscolo PU (eds) Advanced biomass gasification. Academic Press, New York, pp 4–10

    Chapter  Google Scholar 

  51. Reed TB, Das A (1988) Handbook of biomass downdraft gasifier engine systems. Biomass Energy Foundation, Golden, CO

    Book  Google Scholar 

  52. Ouadi M, Fivga A, Jahangiri H, Saghir M, Hornung A (2019) A review of the valorization of paper industry wastes by thermochemical conversion. Ind Eng Chem Res 58(35):15914–15929

    Article  CAS  Google Scholar 

  53. Pfeifer C, Rauch R, Hofbauer H (2004) In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind Eng Chem Res 43(7):1634–1640

    Article  CAS  Google Scholar 

  54. Mahmood ASN, Brammer JG, Hornung A, Steele A, Poulston S (2013) The intermediate pyrolysis and catalytic steam reforming of brewers spent grain. J Anal Appl Pyrolysis 103:328–342

    Article  CAS  Google Scholar 

  55. Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608

    Article  CAS  Google Scholar 

  56. Klaas M, Greenhalf C, Ouadi M, Jahangiri H, Hornung A, Briens C, et al (2020) The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results Eng 7:100165

    Google Scholar 

  57. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  58. **u S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16(7):4406–4414

    Article  CAS  Google Scholar 

  59. Dhyani V, Bhaskar T (2019) Chap. 9—pyrolysis of biomass. In: Pandey A, Larroche C, Dussap C-G, Gnansounou E, Khanal SK, Ricke S (eds) Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels, 2nd edn. Academic Press, New York, pp 217–244

    Chapter  Google Scholar 

  60. Cong H, Mašek O, Zhao L, Yao Z, Meng H, Hu E et al (2018) Slow pyrolysis performance and energy balance of corn stover in continuous pyrolysis-based poly-generation systems. Energy Fuel 32(3):3743–3750

    Article  CAS  Google Scholar 

  61. Crombie K, Mašek O (2014) Investigating the potential for a self-sustaining slow pyrolysis system under varying operating conditions. Bioresour Technol 162:148–156

    Article  CAS  Google Scholar 

  62. Park J, Lee Y, Ryu C, Park YK (2014) Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields. Bioresour Technol 155:63–70

    Article  CAS  Google Scholar 

  63. Stamatov V, Honnery D, Soria J (2006) Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species. Renew Energy 31(13):2108–2121

    Article  CAS  Google Scholar 

  64. Hagner M, Tiilikkala K, Lindqvist I, Niemelä K, Wikberg H, Källi A et al (2018) Performance of liquids from slow pyrolysis and hydrothermal carbonization in plant protection. In: Waste biomass valorization, pp 1–12

    Google Scholar 

  65. Carrier M, Hugo T, Gorgens J, Knoetze H (2011) Comparison of slow and vacuum pyrolysis of sugar cane bagasse. J Anal Appl Pyrolysis 90(1):18–26

    Article  CAS  Google Scholar 

  66. Aziz AA, Deraman M (2013) Pore structure of carbon granules prepared from slow pyrolysis of oil palm empty fruit bunch fibres. J Oil Palm Res 25(2):216–227

    Google Scholar 

  67. Moreira R, Orsini RD, Vaz JM, Penteado JC, Spinace EV (2017) Production of biochar, bio-oil and synthesis gas from cashew nut shell by slow pyrolysis. Waste Biomass Valor 8(1):217–224

    Article  CAS  Google Scholar 

  68. Antal MJ, Gronli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640

    Article  CAS  Google Scholar 

  69. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34

    Article  CAS  Google Scholar 

  70. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35(9):3748–3762

    Google Scholar 

  71. Batidzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC (2013) Biomass torrefaction technology: techno-economic status and future prospects. Energy 62:196–214

    Article  CAS  Google Scholar 

  72. Neumann J, Meyer J, Ouadi M, Apfelbacher A, Binder S, Hornung A (2016) The conversion of anaerobic digestion waste into biofuels via a novel thermo-catalytic reforming process. Waste Manag 47:141–148

    Article  CAS  Google Scholar 

  73. Hornung A (2013) Intermediate pyrolysis of biomass. Woodhead Publ Ser En 40:172–186

    CAS  Google Scholar 

  74. Ouadi M, Brammer JG, Yang Y, Hornung A, Kay M (2013) The intermediate pyrolysis of de-inking sludge to produce a sustainable liquid fuel. J Anal Appl Pyrolysis 102:24–32

    Article  CAS  Google Scholar 

  75. Yang Y, Brammer JG, Mahmood ASN, Hornung A (2014) Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour Technol 169:794–799

    Article  CAS  Google Scholar 

  76. Pattiya A (2018) 1—Fast pyrolysis. In: Rosendahl L (ed) Direct thermochemical liquefaction for energy applications. Woodhead Publishing, Cambridge, pp 3–28

    Chapter  Google Scholar 

  77. Blanco A, Chejne F (2016) Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor. J Anal Appl Pyrolysis 118:105–114

    Article  CAS  Google Scholar 

  78. Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6(1):514–538

    Article  CAS  Google Scholar 

  79. Oasmaa A, Kuoppala E, Solantausta Y (2003) Fast pyrolysis of forestry residue. 2. Physicochemical composition of product liquid. Energy Fuel 17(2):433–443

    Article  CAS  Google Scholar 

  80. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18(2):590–598

    Article  CAS  Google Scholar 

  81. Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716

    Article  CAS  Google Scholar 

  82. Zhang Q, Chang J, Wang TJ, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energ Conver Manage 48(1):87–92

    Article  CAS  Google Scholar 

  83. Hornung A, Apfelbacher A, Sagi S (2011) Intermediate pyrolysis: a sustainable biomass-to-energy concept—biothermal valorisation of biomass (BtVB) process. J Sci Ind Res 70(8):664–667

    CAS  Google Scholar 

  84. Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43(22):6911–6919

    Article  CAS  Google Scholar 

  85. Kebelmann K, Hornung A, Karsten U, Griffiths G (2013) Thermo-chemical behaviour and chemical product formation from polar seaweeds during intermediate pyrolysis. J Anal Appl Pyrolysis 104:131–138

    Article  CAS  Google Scholar 

  86. Ouadi M, Kay M, Brammer J, Hornung A (2012) Waste to power. Tappi J 11(2):55–64

    Article  CAS  Google Scholar 

  87. Hossain AK, Ouadi M, Siddiqui SU, Yang Y, Brammer J, Hornung A et al (2013) Experimental investigation of performance, emission and combustion characteristics of an indirect injection multi-cylinder CI engine fuelled by blends of de-inking sludge pyrolysis oil with biodiesel. Fuel 105:135–142

    Article  CAS  Google Scholar 

  88. Ghidotti M (2017) Analytical methods for the characterisation of volatile and water-soluble organic compounds in biochar. In: Relationships with thermal stability and seed germination. Alma

    Google Scholar 

  89. Hu X, Gholizadeh M (2019) Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage. J Energy Chem 39:109–143

    Article  Google Scholar 

  90. Chen W, Yang H, Chen Y, Chen X, Fang Y, Chen H (2016) Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. J Anal Appl Pyrolysis 120:186–193

    Article  CAS  Google Scholar 

  91. Mollinedo J, Schumacher TE, Chintala R (2015) Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. J Anal Appl Pyrolysis 114:100–108

    Article  CAS  Google Scholar 

  92. Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100(1):178–181

    Google Scholar 

  93. Hood-Nowotny R, Watzinger A, Wawra A, Soja G (2018) The impact of biochar incorporation on inorganic nitrogen fertilizer plant uptake; an opportunity for carbon sequestration in temperate agriculture. Geosciences 8(11):420

    Article  CAS  Google Scholar 

  94. Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517

    Article  CAS  Google Scholar 

  95. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  CAS  Google Scholar 

  96. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  97. Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    Article  CAS  Google Scholar 

  98. Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB (2010) Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1):67–74

    Article  CAS  Google Scholar 

  99. Lede J, Diebold JP, Peacocke GVC, Piskorz J (1997) The nature and properties of intermediate and unvaporized biomass pyrolysis materials. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1/2. Springer, Dordrecht, pp 27–42

    Chapter  Google Scholar 

  100. Isahak WNRW, Hisham MWM, Yarmo MA, T-y YH (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16(8):5910–5923

    Article  CAS  Google Scholar 

  101. Milne T, Agblevor F, Davis M, Deutch S, Johnson D (1997) A review of the chemical composition of fast-pyrolysis oils from biomass. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1/2. Springer, Dordrecht, pp 409–424

    Chapter  Google Scholar 

  102. Garcìa-Pérez M, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C (2006) Multiphase structure of bio-oils. Energy Fuel 20(1):364–375

    Article  CAS  Google Scholar 

  103. Zhang S, Yan Y, Li T, Ren Z (2005) Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour Technol 96(5):545–550

    Article  CAS  Google Scholar 

  104. Hornung U, Schneider D, Hornung A, Tumiatti V, Seifert H (2009) Sequential pyrolysis and catalytic low temperature reforming of wheat straw. J Anal Appl Pyrolysis 85(1):145–150

    Article  CAS  Google Scholar 

  105. Li H, Xu Q, Xue H, Yan Y (2009) Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass. Renew Energy 34(12):2872–2877

    Article  CAS  Google Scholar 

  106. Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater AV et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 2: tests in diesel engines. Biomass Bioenergy 25(1):101–111

    Article  CAS  Google Scholar 

  107. Gust S (1997) Combustion experiences of flash pyrolysis fuel in intermediate size boilers. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1/2. Springer Netherlands, Dordrecht, pp 481–488

    Chapter  Google Scholar 

  108. Balat M (2011) An overview of the properties and applications of biomass pyrolysis oils. Energy Sources Pt A Recov Utilization Environ Eff 33(7):674–689

    Article  CAS  Google Scholar 

  109. Park YK, Yoo ML, Heo HS, Lee HW, Park SH, Jung SC et al (2012) Wild reed of Suncheon Bay: potential bio-energy source. Renew Energy 42:168–172

    Article  CAS  Google Scholar 

  110. Uddin MN, Daud WMAW, Abbas HF (2014) Effects of pyrolysis parameters on hydrogen formations from biomass: a review. RSC Adv 4(21):10467–10490

    Article  CAS  Google Scholar 

  111. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  CAS  Google Scholar 

  112. Guoxin H, Hao H, Yanhong L (2009) Hydrogen-rich gas production from pyrolysis of biomass in an autogenerated steam atmosphere. Energy Fuel 23(3):1748–1753

    Article  CAS  Google Scholar 

  113. Dasappa S, Paul PJ, Mukunda HS, Rajan NKS, Sridhar G, Sridhar HV (2004) Biomass gasification technology—a route to meet energy needs. Curr Sci India 87(7):908–916

    CAS  Google Scholar 

  114. Hasan MDM, Wang XS, Mourant D, Gunawan R, Yu C, Hu X et al (2017) Grinding pyrolysis of Mallee wood: effects of pyrolysis conditions on the yields of bio-oil and biochar. Fuel Process Technol 167:215–220

    Article  CAS  Google Scholar 

  115. He M, **ao B, Liu S, Hu Z, Guo X, Luo S et al (2010) Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J Anal Appl Pyrolysis 87(2):181–187

    Article  CAS  Google Scholar 

  116. Santos J, Ouadi M, Jahangiri H, Hornung A (2020) Valorisation of lignocellulosic biomass investigating different pyrolysis temperatures. J Energy Inst 93(5):1960–1969

    Article  CAS  Google Scholar 

  117. Bashir MA, Jahangiri H, Hornung A, Ouadi M (2021) Deoxygenation of Bio-oil from Calcium-Rich Paper-Mill Waste. Chem Eng Technol 44(1):194–202

    Google Scholar 

  118. Vamvuka D (2011) Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview. Int J Energ Res 35(10):835–862

    Article  CAS  Google Scholar 

  119. Morf P, Hasler P, Nussbaumer T (2002) Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel 81(7):843–853

    Article  CAS  Google Scholar 

  120. Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35(1):232–242

    Article  CAS  Google Scholar 

  121. Zhang L, Hu X, Hu K, Hu C, Zhang Z, Liu Q et al (2018) Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation. J Power Sources 403:137–156

    Article  CAS  Google Scholar 

  122. Shen J, Wang X-S, Garcia-Perez M, Mourant D, Rhodes MJ, Li C-Z (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88(10):1810–1817

    Article  CAS  Google Scholar 

  123. Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7(3):233–250

    Article  CAS  Google Scholar 

  124. Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev 16(7):5101–5109

    Article  CAS  Google Scholar 

  125. Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240

    Article  CAS  Google Scholar 

  126. Roy C, Pakdel H, Brouillard D (1990) The role of extractives during vacuum pyrolysis of wood. J Appl Polym Sci 41(1–2):337–348

    Article  CAS  Google Scholar 

  127. Kallioinen A, Vaari A, Rättö M, Konn J, Siika-aho M, Viikari L (2003) Effects of bacterial treatments on wood extractives. J Biotechnol 103(1):67–76

    Article  CAS  Google Scholar 

  128. Scott DS, Paterson L, Piskorz J, Radlein D (2001) Pretreatment of poplar wood for fast pyrolysis: rate of cation removal. J Anal Appl Pyrolysis 57(2):169–176

    Article  CAS  Google Scholar 

  129. Santos J, Ouadi M, Jahangiri H, Hornung A (2019) Integrated intermediate catalytic pyrolysis of wheat husk. Food Bioprod Process 114:23–30

    Article  CAS  Google Scholar 

  130. Yang Y, Brammer JG, Ouadi M, Samanya J, Hornung A, Xu HM et al (2013) Characterisation of waste derived intermediate pyrolysis oils for use as diesel engine fuels. Fuel 103:247–257

    Article  CAS  Google Scholar 

  131. Fivga A, Jahangiri H, Bashir MA, Majewski AJ, Hornung A, Ouadi M (2020) Demonstration of catalytic properties of de-inking sludge char as a carbon based sacrificial catalyst. J Anal Appl Pyrolysis 146:104773

    Article  CAS  Google Scholar 

  132. Santos J, Jahangiri H, Bashir MA, Hornung A, Ouadi M (2020) The Upgrading of Bio-Oil from the Intermediate Pyrolysis of Waste Biomass Using Steel Slag as a Catalyst. ACS Sustain Chem Eng 8(50):18420–32

    Google Scholar 

  133. Hornung A (2014) Transformation of biomass theory to practice preface. In: Transformation of biomass: theory to practice, pp Xvii–Xviii

    Google Scholar 

  134. Neumann J, Binder S, Apfelbacher A, Gasson JR, Ramírez García P, Hornung A (2015) Production and characterization of a new quality pyrolysis oil, char and syngas from digestate—introducing the thermo-catalytic reforming process. J Anal Appl Pyrolysis 113:137–142

    Article  CAS  Google Scholar 

  135. Ouadi M, Bashir MA, Speranza LG, Jahangiri H, Hornung A (2019) Food and market waste—a pathway to sustainable fuels and waste valorization. Energy Fuel 33(10):9843–9850

    Article  CAS  Google Scholar 

  136. Neumann J, Jager N, Apfelbacher A, Daschner R, Binder S, Hornung A (2016) Upgraded biofuel from residue biomass by thermo-catalytic reforming and hydrodeoxygenation. Biomass Bioenergy 89:91–97

    Article  CAS  Google Scholar 

  137. Ouadi M, Greenhalf C, Jaeger N, Speranza LG, Hornung A (2018) Thermo-catalytic reforming of co-form (R) rejects (waste cleansing wipes). J Anal Appl Pyrolysis 132:33–39

    Article  CAS  Google Scholar 

  138. Kirby ME, Hornung A, Ouadi M, Theodorou MK (2017) The role of thermo-catalytic reforming for energy recovery from food and drink supply chain wastes. Energy Procedia 123:15–21

    Article  CAS  Google Scholar 

  139. Ahmad E, Jager N, Apfelbacher A, Daschner R, Hornung A, Pant KK (2018) Integrated thermo-catalytic reforming of residual sugarcane bagasse in a laboratory scale reactor. Fuel Process Technol 171:277–286

    Article  CAS  Google Scholar 

  140. Ouadi M, Jaeger N, Greenhalf C, Santos J, Conti R, Hornung A (2017) Thermo-catalytic reforming of municipal solid waste. Waste Manag 68:198–206

    Article  CAS  Google Scholar 

  141. Zhang L, Liu R, Yin R, Mei Y (2013) Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sustain Energy Rev 24:66–72

    Article  CAS  Google Scholar 

  142. Lin YC, Huber GW (2009) The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energ Environ Sci 2(1):68–80

    Article  CAS  Google Scholar 

  143. Conti R, Jäger N, Neumann J, Apfelbacher A, Daschner R, Hornung A (2017) Thermocatalytic reforming of biomass waste streams. Energ Technol 5(1):104–110

    Article  CAS  Google Scholar 

  144. Mullen CA, Boateng AA, Mihalcik DJ, Goldberg NM (2011) Catalytic fast pyrolysis of White oak wood in a bubbling fluidized bed. Energy Fuel 25(11):5444–5451

    Article  CAS  Google Scholar 

  145. Jager N, Conti R, Neumann J, Apfelbacher A, Daschner R, Binder S et al (2016) Thermo-catalytic reforming of woody biomass. Energy Fuel 30(10):7923–7929

    Article  CAS  Google Scholar 

  146. Santos J, Ouadi M, Jahangiri H, Hornung A (2020) Thermochemical conversion of agricultural wastes applying different reforming temperatures. Fuel Process Technol 203:106402

    Article  CAS  Google Scholar 

  147. Guo C, Rao KTV, Yuan Z, He S, Rohani S, Xu C (2018) Hydrodeoxygenation of fast pyrolysis oil with novel activated carbon-supported NiP and CoP catalysts. Chem Eng Sci 178:248–259

    Article  CAS  Google Scholar 

  148. Carriel Schmitt C, Gagliardi Reolon MB, Zimmermann M, Raffelt K, Grunwaldt J-D, Dahmen N (2018) Synthesis and regeneration of nickel-based catalysts for hydrodeoxygenation of beech wood fast pyrolysis bio-oil. Catalysts 8(10):449

    Article  CAS  Google Scholar 

  149. Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 1: emulsion production. Biomass Bioenergy 25(1):85–99

    Article  CAS  Google Scholar 

  150. Bridgwater AV (2012) Upgrading biomass fast pyrolysis liquids. Environ Prog Sustain 31(2):261–268

    Article  CAS  Google Scholar 

  151. Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy Fuel 11(5):1081–1091

    Article  CAS  Google Scholar 

  152. Carlson TR, Vispute TR, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1(5):397–400

    Article  CAS  Google Scholar 

  153. Pattiya A, Titiloye JO, Bridgwater AV (2008) Fast pyrolysis of cassava rhizome in the presence of catalysts. J Anal Appl Pyrolysis 81(1):72–79

    Article  CAS  Google Scholar 

  154. Pattiya A, Titiloye JO, Bridgwater AV (2010) Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel 89(1):244–253

    Article  CAS  Google Scholar 

  155. Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241–252

    Article  CAS  Google Scholar 

  156. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF et al (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279(2):257–268

    Article  CAS  Google Scholar 

  157. Nguyen TS, Zabeti M, Lefferts L, Brem G, Seshan K (2013) Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass Bioenergy 48:100–110

    Article  CAS  Google Scholar 

  158. Duman G, Pala M, Ucar S, Yanik J (2013) Two-step pyrolysis of safflower oil cake. J Anal Appl Pyrolysis 103:352–361

    Article  CAS  Google Scholar 

  159. Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L et al (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101(12):4593–4599

    Article  CAS  Google Scholar 

  160. Zhang H, **ao R, Huang H, **ao G (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 100(3):1428–1434

    Article  CAS  Google Scholar 

  161. Stephanidis S, Nitsos C, Kalogiannis K, Iliopoulou EF, Lappas AA, Triantafyllidis KS (2011) Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: effect of hydrothermal pre-treatment of biomass. Catal Today 167(1):37–45

    Article  CAS  Google Scholar 

  162. Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25(6):493–513

    Article  CAS  Google Scholar 

  163. Engtrakul C, Mukarakate C, Starace AK, Magrini KA, Rogers AK, Yung MM (2016) Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. Catal Today 269:175–181

    Article  CAS  Google Scholar 

  164. Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S et al (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal Gen 470:115–122

    Article  CAS  Google Scholar 

  165. Iliopoulou EF, Antonakou EV, Karakoulia SA, Vasalos IA, Lappas AA, Triantafyllidis KS (2007) Catalytic conversion of biomass pyrolysis products by mesoporous materials: effect of steam stability and acidity of Al-MCM-41 catalysts. Chem Eng J 134(1):51–57

    Article  CAS  Google Scholar 

  166. Adam J, Antonakou E, Lappas A, Stöcker M, Nilsen MH, Bouzga A et al (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Micropor Mesopor Mat 96(1):93–101

    Article  CAS  Google Scholar 

  167. French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91(1):25–32

    Article  CAS  Google Scholar 

  168. Zhang C, Hu X, Guo H, Wei T, Dong D, Hu G et al (2018) Pyrolysis of poplar, cellulose and lignin: effects of acidity and alkalinity of the metal oxide catalysts. J Anal Appl Pyrolysis 134:590–605

    Article  CAS  Google Scholar 

  169. Yildiz G, Pronk M, Djokic M, van Geem KM, Ronsse F, van Duren R et al (2013) Validation of a new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading. J Anal Appl Pyrolysis 103:343–351

    Article  CAS  Google Scholar 

  170. Gholizadeh M, Gunawan R, Hu X, de Miguel Mercader F, Westerhof R, Chaitwat W et al (2016) Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor. Fuel Process Technol 148:175–183

    Article  CAS  Google Scholar 

  171. Foster AJ, Jae J, Cheng Y-T, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal Gen 423–424:154–161

    Article  CAS  Google Scholar 

  172. Lappas AA, Kalogiannis KG, Iliopoulou EF, Triantafyllidis KS, Stefanidis SD (2016) Catalytic pyrolysis of biomass for transportation fuels. advances in bioenergy: the sustainability challenge, pp 45–56

    Google Scholar 

  173. Wang K, Johnston PA, Brown RC (2014) Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system. Bioresour Technol 173:124–131

    Article  CAS  Google Scholar 

  174. Wang SR, Dai GX, Yang HP, Luo ZY (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energ Combust 62:33–86

    Article  Google Scholar 

  175. Pindoria RV, Megaritis A, Herod AA, Kandiyoti R (1998) A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics. Fuel 77(15):1715–1726

    Article  CAS  Google Scholar 

  176. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967

    Article  CAS  Google Scholar 

  177. Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43(12):1549–1551

    Article  CAS  Google Scholar 

  178. Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111(1–2):119–132

    Article  CAS  Google Scholar 

  179. ADd O, AFd S, Pimentel MF, Pacheco JGA, Pereira CF, Larrechi MS (2017) Comprehensive near infrared study of Jatropha oil esterification with ethanol for biodiesel production. Spectrochim Acta A Mol Biomol Spectrosc 170:56–64

    Article  CAS  Google Scholar 

  180. Juan JC, Zhang JC, Yarmo MA (2008) Efficient esterification of fatty acids with alcohols catalyzed by Zr(SO(4))(2) center dot 4H(2)O under solvent-free condition. Catal Lett 126(3–4):319–324

    Article  CAS  Google Scholar 

  181. Park YM, Chung SH, Eom HJ, Lee JS, Lee KY (2010) Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresour Technol 101(17):6589–6593

    Article  CAS  Google Scholar 

  182. Ozbay N, Oktar N, Tapan NA (2008) Esterification of free fatty acids in waste cooking oils (WCO): role of ion-exchange resins. Fuel 87(10–11):1789–1798

    Article  CAS  Google Scholar 

  183. Costa AA, Braga PRS, de Macedo JL, Dias JA, Dias SCL (2012) Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Micropor Mesopor Mat 147(1):142–148

    Article  CAS  Google Scholar 

  184. Brahmkhatri V, Patel A (2011) 12-Tungstophosphoric acid anchored to SBA-15: an efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids. Appl Catal A Gen 403(1–2):161–172

    Article  CAS  Google Scholar 

  185. Mantri K, Nakamura R, Miyata Y, Komura K, Sugi Y (2007) Multi-valent metal salt hydrates as catalysts for the esterification of fatty acids and alcohols. Mater Sci Forum 539–543:2317–2322

    Article  Google Scholar 

  186. **e W, Zhao L (2014) Heterogeneous CaO–MoO3–SBA-15 catalysts for biodiesel production from soybean oil. Energ Conver Manage 79:34–42

    Article  CAS  Google Scholar 

  187. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43(22):7887–7916

    Article  CAS  Google Scholar 

  188. Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K (2009) Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chem Eng J 145(3):468–474

    Article  CAS  Google Scholar 

  189. **e W, Liu Y, Chun H (2012) Biodiesel preparation from soybean oil by using a heterogeneous CaxMg2 − xO2 catalyst. Catal Lett 142(3):352–359

    Google Scholar 

  190. James OO, Maity S, Mesubi MA, Usman LA, Ajanaku KO, Siyanbola TO et al (2012) A review on conversion of triglycerides to on-specification diesel fuels without additional inputs. Int J Energ Res 36(6):691–702

    Article  CAS  Google Scholar 

  191. Parida K, Mishra HK (1999) Catalytic ketonisation of acetic acid over modified zirconia: 1. Effect of alkali-metal cations as promoter. J Mol Catal A Chem 139(1):73–80

    Article  CAS  Google Scholar 

  192. Bayahia H, Kozhevnikova EF, Kozhevnikov IV (2015) Ketonisation of carboxylic acids over Zn-Cr oxide in the gas phase. Appl Catal Environ 165:253–259

    Article  CAS  Google Scholar 

  193. Iliopoulou EF (2010) Review of C-C coupling reactions in biomass exploitation processes. Curr Org Synth 7(6):587–598

    Article  CAS  Google Scholar 

  194. Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2010) Ketonization reactions of carboxylic acids and esters over Ceria-Zirconia as biomass-upgrading processes. Ind Eng Chem Res 49(13):6027–6033

    Article  CAS  Google Scholar 

  195. Aguado R, Olazar M, Jose MJS, Aguirre G, Bilbao J (2000) Pyrolysis of sawdust in a conical spouted bed reactor. Yields and product composition. Ind Eng Chem Res 39(6):1925–1933

    Article  CAS  Google Scholar 

  196. Nie L, Resasco DE (2012) Improving carbon retention in biomass conversion by alkylation of phenolics with small oxygenates. Appl Catal A Gen 447:14–21

    Article  CAS  Google Scholar 

  197. Zapata PA, Faria J, Ruiz MP, Resasco DE (2012) Condensation/hydrogenation of biomass-derived oxygenates in water/oil emulsions stabilized by nanohybrid catalysts. Top Catal 55(1–2):38–52

    Article  CAS  Google Scholar 

  198. Gliński M, Kijeński J (2000) Decarboxylative coupling of heptanoic acid. Manganese, cerium and zirconium oxides as catalysts. Appl Catal Gen 190(1–2):87–91

    Article  Google Scholar 

  199. Okumura K, Iwasawa Y (1996) Zirconium oxides dispersed on silica derived from Cp2ZrCl2, [(i-PrCp)2ZrH(μ-H)]2, and Zr(OEt)4 characterized by x-ray absorption fine structure and catalytic ketonization of acetic acid. J Catal 164(2):440–448

    Article  CAS  Google Scholar 

  200. Gliński M, Kijeński J (2000) Catalytic ketonization of carboxylic acids synthesis of saturated and unsaturated ketones. React Kinet Catal L 69(1):123–128

    Article  Google Scholar 

  201. Parida KM, Samal A, Das NN (1998) Catalytic ketonization of monocarboxylic acids over Indian Ocean manganese nodules. Appl Catal Gen 166(1):201–205

    Article  CAS  Google Scholar 

  202. Randery SD, Warren JS, Dooley KM (2002) Cerium oxide-based catalysts for production of ketones by acid condensation. Appl Catal A Gen 226(1–2):265–280

    Article  CAS  Google Scholar 

  203. Dooley KM, Bhat AK, Plaisance CP, Roy AD (2007) Ketones from acid condensation using supported CeO2 catalysts: effect of additives. Appl Catal A Gen 320:122–133

    Article  CAS  Google Scholar 

  204. Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) Ketonization of carboxylic acids over CeO2-based composite oxides. J Mol Catal A Chem 227(1–2):231–239

    Article  CAS  Google Scholar 

  205. Pestman R, Koster RM, vanDuijne A, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides 0.2. Bimolecular reaction of aliphatic acids to ketones. J Catal 168(2):265–272

    Article  CAS  Google Scholar 

  206. Zaki MI, Hasan MA, Pasupulety L (2001) Surface reactions of acetone on Al2O3, TiO2, ZrO2, and CeO2: IR spectroscopic assessment of impacts of the surface acid-base properties. Langmuir 17(3):768–774

    Article  CAS  Google Scholar 

  207. Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloid Surf A 190(3):261–274

    Article  CAS  Google Scholar 

  208. Martin D, Duprez D (1997) Evaluation of the acid-base surface properties of several oxides and supported metal catalysts by means of model reactions. J Mol Catal A Chem 118(1):113–128

    Article  CAS  Google Scholar 

  209. Jahangiri H, Osatiashtiani A, Bennett JA, Isaacs MA, Gu S, Lee AF et al (2018) Zirconia catalysed acetic acid ketonisation for pre-treatment of biomass fast pyrolysis vapours. Cat Sci Technol 8(4):1134–1141

    Article  CAS  Google Scholar 

  210. Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3(11):2456–2473

    Article  CAS  Google Scholar 

  211. Vervecken M, Servotte Y, Wydoodt M, Jacobs L, Martens JA, Jacobs PA (1986) Zeolite-induced selectivity in the conversion of the lower aliphatic carboxylic acids. In: Setton R (ed) chemical reactions in organic and inorganic constrained systems. Springer, Dordrecht, pp 95–114

    Chapter  Google Scholar 

  212. Jahangiri H, Osatiashtiani A, Ouadi M, Hornung A, Lee AF, Wilson K (2019) Ga/HZSM-5 catalysed acetic acid ketonisation for upgrading of biomass pyrolysis vapours. Catalysts 9(10):841

    Article  CAS  Google Scholar 

  213. Danon B, Marcotullio G, de Jong W (2014) Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem 16(1):39–54

    Article  CAS  Google Scholar 

  214. Zeitsch KJ (2000) Furfural production needs chemical innovation. Chem Innov 30(4):29–32

    CAS  Google Scholar 

  215. Panagiotopoulou P, Vlachos DG (2014) Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Appl Catal A Gen 480:17–24

    Article  CAS  Google Scholar 

  216. Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229(2):414–423

    Article  CAS  Google Scholar 

  217. Weingarten R, Cho J, Conner WC, Huber GW (2010) Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chem 12(8):1423–1429

    Article  CAS  Google Scholar 

  218. de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34(2):164–178

    Article  Google Scholar 

  219. Qi XH, Watanabe M, Aida TM, Smith RL (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10(7):799–805

    Article  CAS  Google Scholar 

  220. Yan K, Wu GS, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sustain Energy Rev 38:663–676

    Article  CAS  Google Scholar 

  221. Montane D, Salvado J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22(4):295–304

    Article  CAS  Google Scholar 

  222. Vlachos DG, Caratzoulas S (2010) The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis. Chem Eng Sci 65(1):18–29

    Article  CAS  Google Scholar 

  223. Sako T, Sugeta T, Nakazawa N, Otake K, Sato M, Ishihara K et al (1995) High-pressure vapor-liquid and vapor-liquid-liquid equilibria for systems containing supercritical carbon-dioxide, water and furfural. Fluid Phase Equilibr 108(1–2):293–303

    Article  CAS  Google Scholar 

  224. **ong K, Wan WM, Chen JGG (2016) Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces. Surf Sci 652:91–97

    Article  CAS  Google Scholar 

  225. Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfuralu—a promising platform for lignocellulosic biofuels. ChemSusChem 5(1):150–166

    Article  CAS  Google Scholar 

  226. Dong F, Zhu YL, Zheng HY, Zhu YF, Li XQ, Li YW (2015) Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: the synergistic effect of metal and acid sites. J Mol Catal A Chem 398:140–148

    Article  CAS  Google Scholar 

  227. Ordomsky VV, Schouten JC, van der Schaaf J, Nijhuis TA (2013) Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural. Appl Catal A Gen 451:6–13

    Article  CAS  Google Scholar 

  228. Srivastava S, Jadeja GC, Parikh J (2016) A versatile bi-metallic copper-cobalt catalyst for liquid phase hydrogenation of furfural to 2-methylfuran. RSC Adv 6(2):1649–1658

    Article  CAS  Google Scholar 

  229. De S, Saha B, Luque R (2015) Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour Technol 178:108–118

    Article  CAS  Google Scholar 

  230. Ren H, Yu WT, Salciccioli M, Chen Y, Huang YL, **ong K et al (2013) Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts. ChemSusChem 6(5):798–801

    Article  CAS  Google Scholar 

  231. Cheng SY, Wei L, Julson J, Rabnawaz M (2017) Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst. Energ Conver Manage 150:331–342

    Article  CAS  Google Scholar 

  232. Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK (2018) Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: a review. J Anal Appl Pyrolysis 133:117–127

    Article  CAS  Google Scholar 

  233. Yang T, Shi L, Li R, Li B, Kai X (2019) Hydrodeoxygenation of crude bio-oil in situ in the bio-oil aqueous phase with addition of zero-valent aluminum. Fuel Process Technol 184:65–72

    Article  CAS  Google Scholar 

  234. Muradov N (2017) Low to near-zero CO2 production of hydrogen from fossil fuels: status and perspectives. Int J Hydrogen Energy 42(20):14058–14088

    Article  CAS  Google Scholar 

  235. Duan P, Savage PE (2011) Catalytic hydrotreatment of crude algal bio-oil in supercritical water. Appl Catal Environ 104(1):136–143

    Article  CAS  Google Scholar 

  236. Gandarias I, Requies J, Arias PL, Armbruster U, Martin A (2012) Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al2O3 catalysts. J Catal 290:79–89

    Article  CAS  Google Scholar 

  237. Chia M, Dumesic JA (2011) Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to gamma-valerolactone over metal oxide catalysts. Chem Commun 47(44):12233–12235

    Article  CAS  Google Scholar 

  238. Jae J, Zheng WQ, Lobo RF, Vlachos DG (2013) Production of Dimethylfuran from Hydroxymethylfurfural through catalytic transfer hydrogenation with Ruthenium supported on carbon. ChemSusChem 6(7):1158–1162

    Article  CAS  Google Scholar 

  239. Zheng H-Y, Zhu Y-L, Huang L, Zeng Z-Y, Wan H-J, Li Y-W (2008) Study on Cu–Mn–Si catalysts for synthesis of cyclohexanone and 2-methylfuran through the coupling process. Cat Com 9(3):342–348

    Article  CAS  Google Scholar 

  240. Yang J, Zheng H-Y, Zhu Y-L, Zhao G-W, Zhang C-H, Teng B-T et al (2004) Effects of calcination temperature on performance of Cu–Zn–Al catalyst for synthesizing γ-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation. Cat Com 5(9):505–510

    Article  CAS  Google Scholar 

  241. Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3(12):2655–2668

    Article  CAS  Google Scholar 

  242. Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of Furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal Lett 141(6):784–791

    Article  CAS  Google Scholar 

  243. Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101(11):4179–4186

    Article  CAS  Google Scholar 

  244. Boussarsar H, Roge B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol 100(24):6537–6542

    Article  CAS  Google Scholar 

  245. Lichtenthaler FW, Peters S (2004) Carbohydrates as green raw materials for the chemical industry. C R Chim 7(2):65–90

    Article  CAS  Google Scholar 

  246. Qazanfarzadeh Z, Kadivar M (2016) Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Int J Biol Macromol 91:1134–1140

    Article  CAS  Google Scholar 

  247. Skiba EA, Budaeva VV, Baibakova OV, Zolotukhin VN, Sakovich GV (2017) Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem Eng J 126:118–125

    Article  CAS  Google Scholar 

  248. Lawford HG, Rousseau JD, Tolan JS (2001) Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate. Appl Biochem Biotechnol 91(3):133–146

    Article  Google Scholar 

  249. Valdebenito F, Pereira M, Ciudad G, Azocar L, Briones R, Chinga-Carrasco G (2017) On the nanofibrillation of corn husks and oat hulls fibres. Ind Crop Prod 95:528–534

    Article  CAS  Google Scholar 

  250. Varma AK, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crop Prod 95:704–717

    Article  CAS  Google Scholar 

  251. Chauhan MK, Varun, Chaudhary S, Kumar S, Samar (2011) Life cycle assessment of sugar industry: a review. Renew Sustain Energy Rev 15(7):3445–3453

    Article  Google Scholar 

  252. Jain A, Wei YZ, Tietje A (2016) Biochemical conversion of sugarcane bagasse into bioproducts. Biomass Bioenergy 93:227–242

    Article  CAS  Google Scholar 

  253. Rocha GJD, Nascimento VM, Goncalves AR, Silva VFN, Martin C (2015) Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Ind Crop Prod 64:52–58

    Article  CAS  Google Scholar 

  254. Chandel AK, Antunes FAF, Freitas WLC, da Silva SS (2013) Sequential acid-base pretreatment of sugarcane bagasse: a facile method for the sugars recovery after enzymatic hydrolysis. J Bioprocess Eng Biorefin 2(1):11–19

    Article  Google Scholar 

  255. Maryana R, Oktaviani K, Tanifuji K, Ohi H (2014) Comparison between acid sulfite and soda-AQ delignification methods for effective bio-ethanol production from sugarcane bagasse and oil palm empty fruit bunch. In: 2014 Pan Pac Conf TAPPI; May 28; Taiwan, pp E46–E52

    Google Scholar 

  256. Ramos LP, da Silva L, Ballem AC, Pitarelo AP, Chiarello LM, Silveira MHL (2015) Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour Technol 175:195–202

    Article  CAS  Google Scholar 

  257. Al Arni S (2018) Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew Energy 124:197–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hessam Jahangiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jahangiri, H., Santos, J., Hornung, A., Ouadi, M. (2021). Thermochemical Conversion of Biomass and Upgrading of Bio-Products to Produce Fuels and Chemicals. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65017-9_1

Download citation

Publish with us

Policies and ethics

Navigation