Genomics-Assisted Breeding for Biotic Stress Syndrome Resistance in Cotton

  • Chapter
  • First Online:
Cotton Precision Breeding

Abstract

The final goal of almost all plant breeding programs is to improve the economic yield—a trait that is almost always hampered by biotic and abiotic stresses. Cotton (Gossypium spp.) is the most important natural fiber producing crop globally, and cash crop for many developed and develo** countries. Albeit possessing high yield potential, the on-field yield is underrepresented mainly due to biotic and abiotic stresses. A host of diseases through numerous pathways cause biotic stress and, therefore, in this chapter, we call them cotton biotic stress (CBS) syndrome. Here, we give a general overview of (1) the CBS syndrome and (2) the yield losses incurred upon cotton by the CBS. The primary focus is, however, on (1) the prospects and challenges of marker-assisted breeding via introgression of large-effect marker alleles into the breeding lines to provide resistance against the CBS syndrome and (2) the utility of the whole-genome sequencing and production of dense marker genotypes to predict the genetic value of CBS syndrome traits. We also discuss some breeding improvement targets in the context of CBS syndrome resistance. In the end, we discuss the future perspectives on the use of genomic technologies which may help cotton breeders and geneticists to improve and realize the actual yield potential of cotton varieties—a crop whose dividend provision is severely hampered by the use of extensive nongenetic agrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas A, Iqbal MA, Rahman M-u, Paterson AH (2015) Estimating genetic diversity among selected cotton genotypes and the identification of DNA markers associated with resistance to cotton leaf curl disease. Turk J Bot 39:1033–1041

    Article  CAS  Google Scholar 

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell Publishing Ltd

    Google Scholar 

  • Ali M (1997) Breeding of cotton varieties for resistance to cotton leaf curl virus. Pak J Phytopathol 9:1–7

    Google Scholar 

  • Anderson JA, Chao S, Liu S (2007) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci 47:S-112–S-119

    Article  Google Scholar 

  • Arshad M, Khan MI, Ali CR, Afzal M, ur-Rahman M (2009) Registration of ‘CIM-496’ cotton. J Plant Regist 3:231–235

    Article  Google Scholar 

  • Aslam M, Jiang C, Wright R, Paterson A (2000) Identification of molecular markers linked to leaf curl virus disease resistance in cotton. Journal of Sciences Islamic Public of Iran 11: 277–280

    Google Scholar 

  • Atkinson G (1892) Some diseases of cotton. 3. Frenching. In: Some diseases of cotton 3 Frenching. pp 19–29

    Google Scholar 

  • Azhar M, Amin I, Anjum Z, Mansoor S (2011) Gossypium robinsonii, an Australian wild cotton species is an asymptomatic host of the cotton leaf curl disease pathogen complex. Aust Plant Dis Notes 6:7–10

    Article  Google Scholar 

  • Baenziger PS, Depauw RM (2009) Wheat breeding: procedures and strategies. In: Wheat science and trade. pp 273–308

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernardo R (2010) Breeding for quantitative traits in plants, 2nd edn. Stemma Press, Woodbury

    Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Bird L (1982) The MAR (multi-adversity resistance) system for genetic improvement of cotton. Plant Dis 66(2):172–176

    Article  Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense—fuel for the fire. Mol Plant-Microbe Interact 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Markham PG (2000) Cotton leaf curl virus disease. Virus Res 71:151–159

    Article  CAS  PubMed  Google Scholar 

  • Brinkerhoff LA (1970) Variation in Xanthomonas malvacearum and its relation to control. Annu Rev Phytopathol 8:85–110

    Article  Google Scholar 

  • Brinkerhoff LA, Verhalen LA, Johnson WM, Essenberg M, Richardson PE (1984) Development of immunity to bacterial blight of cotton and its implications for other diseases. Plant Dis 68:169

    Article  Google Scholar 

  • Brown JK (1992) Virus diseases of cotton. In: Hillocks RJ (ed) Cotton diseases. Commonwealth Agricultural Bureaux International, Wallingford, pp 275–330

    Google Scholar 

  • Brown J (2002) Plant virus and mycoplasma diseases of cotton. Cotton Compendium Amer Phytopath Soc, St Paul

    Google Scholar 

  • Cai JH, **e K, Lin L, Qin B, Chen B, Meng J, Liu Y (2010) Cotton leaf curl Multan virus newly reported to be associated with cotton leaf curl disease in China. Plant Pathol 59:794–795

    Article  Google Scholar 

  • Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cianchetta AN, Davis R (2015) Fusarium wilt of cotton: management strategies. Crop Prot 73:40–44

    Article  Google Scholar 

  • Cun M, Guiliang J, Wenji S (1997) Current status, problem and countermeasure on resistance breeding to verticillium wilt of cotton in China. Zhongguo Nong ye ke xue = Zhongguo Nongye Kexue 30:58–64

    Google Scholar 

  • Davis R, Moore N, Kochman J (1996) Characterisation of a population of Fusarium oxysporum f. sp. vasinfectum causing wilt of cotton in Australia. Aust J Agric Res 47:1143–1156

    Article  Google Scholar 

  • Davis R, Colyer P, Rothrock C, Kochman J (2006) Fusarium wilt of cotton: population diversity and implications for management. Plant Dis 90:692–703

    Article  CAS  PubMed  Google Scholar 

  • Delannoy E, Lyon BR, Marmey P, Jalloul, A, Daniel JF, Montillet JL, Essenberg M, Nicole M (2005) Resistance of Cotton Towards Xanthomonas campestris pv. Malavacearum. Annu Rev Phytopathol 43: 63–82

    Google Scholar 

  • Du X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M, Jia Y, Pan Z, Gong W, Liu Z, Zhu H, Ma L, Liu F, Yang D, Wang F, Fan W, Gong Q, Peng Z, Wang L, Wang X, Xu S, Shang H, Lu C, Zheng H, Huang S, Lin T, Zhu Y, Li F (2018) Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796–802

    Article  CAS  PubMed  Google Scholar 

  • El-Zik K, Bird L (1970) Effectiveness of specific genes and gene combinations in conferring resistance to races of Xanthomonas malvacearum in Upland cotton. Phytopathology 60:441–447

    Article  Google Scholar 

  • Essenberg M, Bayles MB, Samad RA, Hall JA, Brinkerhoff L, Verhalen LM (2002) Four near-isogenic lines of cotton with different genes for bacterial blight resistance. Phytopathology 92:1323–1328

    Article  CAS  PubMed  Google Scholar 

  • Essenberg M, Bayles MB, Pierce ML, Verhalen LM (2014) Pyramiding B genes in cotton achieves broader but not always higher resistance to bacterial blight. Phytopathology 104:1088–1097

    Article  PubMed  Google Scholar 

  • Fiehn O, Weckwerth W (2003) Deciphering metabolic networks. Eur J Biochem 270:579–588

    Article  CAS  PubMed  Google Scholar 

  • Flor H (1955) Host-parasite interactions in flax rust-its genetics and other implications. Phytopathology 45:680–685

    Google Scholar 

  • Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Long L, Zhu L-F, Xu L, Gao W-H, Sun L-Q, Liu L-L, Zhang X-L (2013) Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics 12:3690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gapare W, Liu S, Conaty W, Zhu Q-H, Gillespie V, Llewellyn D, Stiller W, Wilson I (2018) Historical datasets support genomic selection models for the prediction of cotton fiber quality phenotypes across multiple environments. G3: Genes, Genomes, Genetics 8:1721–1732

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Hillocks R (1983) Infection of cotton seed by Fusarium oxysporum f. sp. vasinfectum in cotton varieties resistant or susceptible to Fusarium wilt. Trop Agric 60:141–143

    Google Scholar 

  • Hillocks R (1992) Bacterial blight. In: Cotton diseases. pp 39–85

    Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan Y-L, Rahman M-u, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Tahir M, Mehmood T (1991) Cotton leaf curl virus. Pak J Plant Pathol 3:57–61

    Google Scholar 

  • Hutchinson J, Knight RL, Pearson E (1950) Response of cotton to leaf-curl disease. J Genet 50:100

    Article  CAS  PubMed  Google Scholar 

  • Idris A (1990) Cotton leaf curl virus disease in the Sudan. Mededeling van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, vol 55. pp 263–267

    Google Scholar 

  • Iqbal MJ, Aziz N, Saeed N, Zafar Y, Malik K (1997) Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor Appl Genet 94:139–144

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MJ, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’ of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 103:547–554

    Article  CAS  Google Scholar 

  • Jain A, Roorkiwal M, Pandey MK, Varshney RK (2017) Current status and prospects of genomic selection in legumes. Genomic selection for crop improvement. Springer, pp 131–147

    Google Scholar 

  • Jalloul A, Sayegh M, Champion A, Nicole M (2015) Bacterial blight of cotton. Phytopathologia Mediterranea 54(1): 3–20

    Google Scholar 

  • Karademir E, Karademir C, Ekinci R, Baran B, Sagir A (2012) Effect of Verticillium dahliae Kleb. on cotton yield and fiber technological properties. International Journal of Plant Production 6:387–407

    Google Scholar 

  • Khizar M, Shi J, Saleem S, Liaquat F, Ashraf M, Latif S, Haroon U, Hassan SW, Rehman S, Chaudhary HJ (2020) Resistance associated metabolite profiling of Aspergillus leaf spot in cotton through non-targeted metabolomics. PLoS One 15:e0228675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick TW (1931) Further studies on leaf-curl of cotton in the Sudan. Bull Entomol Res 22: 323–363

    Google Scholar 

  • Knight R (1948) The role of major genes in the evolution of economic characters. J Genet 48:370

    Article  CAS  PubMed  Google Scholar 

  • Knight RL, Clouston T (1939) The genetics of blackarm resistance-I. Factors B1 and B2. J Genet 38:133–159

    Article  Google Scholar 

  • Knight RL, Hutchinson JB (1950) The evolution of blackarm resistance in cotton. J Genet 50: 36–58

    Google Scholar 

  • Konan ON, d’Hont A, Baudoin JP, Mergeai G (2007) Cytogenetics of a new trispecies hybrid in cotton:[(Gossypium hirsutum L.× G. thurberi Tod.) 2× G. longicalyx Hutch. & Lee]. Plant Breed 126:176–181

    Article  CAS  Google Scholar 

  • Kushalappa AC, Gunnaiah R (2013) Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci 18:522–531

    Article  CAS  PubMed  Google Scholar 

  • Lawrence KS, Hagen A, Norton R, Faske T, Hutmacher R, Muller J, Mehl H (2017) Cotton disease loss estimate committee report, 2016. In: Proc. 2017 beltwide cotton conference, Dallas, vol 1. pp 150–152

    Google Scholar 

  • Li Z-K, Chen B, Li X-X, Wang J-P, Zhang Y, Wang X-F, Yan Y-Y, Ke H-F, Yang J, Wu J-H, Wang G-N, Zhang G-Y, Wu L-Q, Wang X-Y, Ma Z-Y (2019) A newly identified cluster of glutathione S-transferase genes provides Verticillium wilt resistance in cotton. Plant J 98:213–227

    Article  CAS  PubMed  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. Concepts and breeding of heterosis in crop plants. Crop Science Society of America, Madison, pp 29–44

    Google Scholar 

  • Meuwissen T, Hayes B, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minton EB, Garber RH (1983) Controlling the seedling complex of cotton. Plant Dis 67:115

    Article  Google Scholar 

  • Moll RH, Lonnquist JH, Fortuno JV, Johnson EC (1965) The relationship of heterosis and genetic divergence in maize. Genetics 52:139–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9:e108277

    Article  PubMed  PubMed Central  Google Scholar 

  • Naqvi RZ, Zaidi SS-e-A, Akhtar KP, Strickler S, Woldemariam M, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Jander G, Mueller LA, Asif M, Mansoor S (2017) Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci Rep 7:15880

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazeer W, Tipu A L, Ahmad S, Mahmood K, Mahmood A, Zhou B (2014) Evaluation of cotton leaf curl virus resistance in BC1, BC2 and BC3 progenies from an interspecific cross between Gossypium arboreum and Gossypium hirsutum. 9(11): e111861

    Google Scholar 

  • Niu C, Lister H, Nguyen B, Wheeler T, Wright R (2008) Quantitative trait loci controlling resistance to Thielaviopsis basicola in diploid cotton. Theor Appl Genet 117:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH (2010) Comparative genomics in crop plants. Molecular techniques in crop improvement. Springer, pp 23–61

    Google Scholar 

  • Pkania KC, Venneman J, Audenaert K, Kiplagat O, Gheysen G, Haesaert G (2014) Present status of bacterial blight in cotton genotypes evaluated at Busia and Siaya counties of Western Kenya. Eur J Plant Pathol 139:863–874

    Article  Google Scholar 

  • Rahman M-u, Zafar Y (2007) Registration of NIBGE-115 cotton. J Plant Regist 1:51–52

    Article  Google Scholar 

  • Rahman M, Hussain D, Zafar Y (2002) Estimation of genetic divergence among elite cotton cultivars–genotypes by DNA fingerprinting technology. Crop Sci 42:2137–2144

    Article  CAS  Google Scholar 

  • Rahman M, Hussain D, Malik T, Zafar Y (2005a) Genetics of resistance to cotton leaf curl disease in Gossypium hirsutum. Plant Pathol 54:764–772

    Article  CAS  Google Scholar 

  • Rahman M, Asif M, Ullah I, Malik KA, Zafar Y (2005b) Overview of cotton genomic studies in Pakistan. In: Plant & animal genome conference XIII. San Diego. p 81

    Google Scholar 

  • Rahman M, Yasmin T, Tabbasam N, Ullah I, Asif M, Zafar Y (2008) Studying the extent of genetic diversity among Gossypium arboreum L. genotypes/cultivars using DNA fingerprinting. Genet Resour Crop Evol 55:331–339

    Article  Google Scholar 

  • Rahman M, Rahmat Z, Mahmood A, Abdullah K, Zafar Y (2014a) Cotton germplasm of Pakistan. In: Abdurakhmonov I (ed) World cotton germplasm resources. In-Tech. ISBN: 978-953-51-1622-6. https://doi.org/10.5772/58620

  • Rahman M, Ahmad A, Khan AQ, Abbas A, Rahmat Z, Sarfraz Z et al (2014b) Use of genetic and genomic approaches for controlling cotton leaf curl disease complex in Pakistan. In: Proceedings of the international cotton genome initiative conference, Wuhan, pp 26–28

    Google Scholar 

  • Rahman M-u, Khan AQ, Rahmat Z, Iqbal MA, Zafar Y (2017) Genetics and genomics of cotton leaf curl disease, its viral causal agents and whitefly vector: a way forward to sustain cotton fiber security. Front Plant Sci 8:1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Zafar Y (2012). Registration of NN-3 cotton. J Plant Regist 6, 342–347

    Google Scholar 

  • Rahmat Z, Mahmood A, Abdullah K, Zafar Y (2014) Cotton germplasm of Pakistan. In World Cotton Germplasm Resources. IntechOpen

    Google Scholar 

  • Rahmat Z, Ahmad S, Zia Z, Rahman M (2019) Genetic monitoring of introgressed alleles from Gossypium arboreum L. into G. hirsutum L. using SSR markers: a potential approach for bringing new alleles under cultivation. Pak J Bot 51:479–486

    Article  CAS  Google Scholar 

  • Raj TN, Kendrick B (2006) A monograph of Chalara and allied genera. Wilfrid Laurier Univ Press

    Google Scholar 

  • Rajagopalan PA, Naik A, Katturi P, Kurulekar M, Kankanallu RS, Anandalakshmi R (2012) Dominance of resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) in northwestern India. Arch Virol 157:855–868

    Article  CAS  PubMed  Google Scholar 

  • Reddy RC, Muniyappa V, Colvin J, Seal S (2005) A new begomovirus isolated from Gossypium barbadense in Southern India. Plant Pathol 54:570

    Article  Google Scholar 

  • Robb J (2007) Verticillium tolerance: resistance, susceptibility, or mutualism? Botany 85:903–910

    Google Scholar 

  • Robinson AF (2007) Reniform in US cotton: when, where, why, and some remedies. Annu Rev Phytopathol 45:263–288

    Article  CAS  PubMed  Google Scholar 

  • Robinson A, Bell A, Dinghe N, Stelly D (2004) Status report on introgression of reniform nematode resistance from Gossypium longicalyx. In: National cotton council beltwide cotton conference, San Antonio

    Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothrock C (1992) Influence of soil temperature, water, and texture on Thielaviopsis basicola and black root rot of cotton. Phytopathology 82:1202–1206

    Article  Google Scholar 

  • Sanogo S, Zhang J (2016) Resistance sources, resistance screening techniques and disease management for Fusarium wilt in cotton. Euphytica 207:255–271

    Article  CAS  Google Scholar 

  • Schaeffer L (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223

    Article  CAS  PubMed  Google Scholar 

  • Shaban M, Miao Y, Ullah A, Khan AQ, Menghwar H, Khan AH, Ahmed MM, Tabassum MA, Zhu L (2018) Physiological and molecular mechanism of defense in cotton against Verticillium dahliae. Plant Physiol Biochem 125:193–204

    Article  CAS  PubMed  Google Scholar 

  • Shaheen T, Tabbasam N, Iqbal MA, Ashraf M, Zafar Y, Paterson AH (2012) Cotton genetic resources. A review. Agron Sustain Dev 32:419–432

    Article  Google Scholar 

  • Shan C-M, Shangguan X-X, Zhao B, Zhang X-F, Chao L-M, Yang C-Q, Wang L-J, Zhu H-Y, Zeng Y-D, Guo W-Z, Zhou B-L, Hu G-J, Guan X-Y, Chen ZJ, Wendel JF, Zhang T-Z, Chen X-Y (2014) Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5:5519

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Navabi A, Yu K (2011) Association map** of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starr J, Koenning S, Kirkpatrick T, Robinson A, Roberts P, Nichols R (2007) The future of nematode management in cotton. J Nematol 39:283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa M, Hutmacher RB, Roberts PA, Wright SD, Nichols RL, Davis RM (2013) Inheritance and QTL map** of Fusarium wilt race 4 resistance in cotton. Theor Appl Genet 126:1405–1418

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Walker NR, Kirkpatrick T, Rothrock C (1998) Interaction between Meloidogyne incognita and Thielaviopsis basicola on cotton (Gossypium hirsutum). J Nematol 30:415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace T, El-Zik K (1990) Quantitative analysis of resistance in cotton to three new isolates of the bacterial blight pathogen. Theor Appl Genet 79:443–448

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang D, Zheng X, Qin A, Zhou J, Guo B, Chen Y, Wen X, Ye W, Zhou Y (2019a) Multi-strategic RNA-seq analysis reveals a high-resolution transcriptional landscape in cotton. Nat Commun 10:1–15

    Google Scholar 

  • Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, ** S, Yang X, Min L, Li G, Chen L-L, Zheng H, Lindsey K, Lin Z, Udall JA, Zhang X (2019b) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF (1989) New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci 86:4132–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139

    Article  Google Scholar 

  • Wheeler T, Gannaway J, Keating K (1999) Identification of resistance to Thielaviopsis basicola in diploid cotton. Plant Dis 83:831–833

    Article  CAS  PubMed  Google Scholar 

  • Wright RJ, Thaxton PM, El-Zik KM, Paterson AH (1998) D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 149:1987–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright RJ, Niu C, Nguyen B (2009) Bridging classical and molecular genetics of cotton disease resistance. In: Genetics and genomics of cotton. Springer, pp 313–336

    Google Scholar 

  • Zhang J, Sanogo S, Flynn R, Baral JB, Bajaj S, Hughs S, Percy RG (2012) Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to Upland cotton (G. hirsutum). Euphytica 187:147–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quddoos H. Muqaddasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbas, A., Muqaddasi, Q.H. (2021). Genomics-Assisted Breeding for Biotic Stress Syndrome Resistance in Cotton. In: Rahman, Mu., Zafar, Y., Zhang, T. (eds) Cotton Precision Breeding. Springer, Cham. https://doi.org/10.1007/978-3-030-64504-5_5

Download citation

Publish with us

Policies and ethics

Navigation