Improving Resistance to Diseases and Pests: A Dynamic Situation

  • Chapter
  • First Online:
Potato Breeding: Theory and Practice

Abstract

This chapter considers 27 diseases and 6 pests of potatoes for which increased resistance may be required: late blight (an oomycete), 11 fungal diseases, common scab (an actinomycete), four bacterial diseases, nine viral diseases and one viroid, four insect pests and cyst and root-knot nematodes. The prerequisites for successful breeding are a source of resistance, a reliable screen for resistance using the most appropriate isolate(s) of the pathogen or population(s) of the pest, and an understanding of the inheritance of resistance. The source of resistance may be a modern cultivar, a cultivated landrace or a wild relative, and the resistance may be isolate/population-specific or broad spectrum. Reliable tests are considered for qualitative resistance (no escapes) and quantitative resistance (little environmental variation), on plant parts, seedlings and whole plants in controlled environment facilities and through disease progress curves on plants in field nurseries. Well-known major genes for resistance are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alor N, Tierno R, Cooke DEL, de Galarreta JIR (2019) Characterization of Phytophthora infestans isolates of potato crops from Spain. Potato Res 62(4):453–463

    Google Scholar 

  • Alyokhin A, Vincent C, Giordanengo P (2012) Insect pests of potato: global perspectives on biology and management. Elsevier, San Diego, 616p

    Google Scholar 

  • Andrivon D, Pellé R, Ellissèche D (2006) Assessing resistance types and levels to epidemic diseases from the analysis of disease progress curves: principles and application to potato late blight. Am J Potato Res 83:455–461

    Google Scholar 

  • Armstrong MR, Vossen J, Lim TY, Hutten RC, Xu J, Strachan SM, Harrower B, Champouret N, Gilroy EM, Hein I (2019) Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnol J 17(2):540–549. https://doi.org/10.1111/pbi.12997

    Article  CAS  PubMed  Google Scholar 

  • Bae J, Tai G, Jansky SH (2009) Selection for Verticillium wilt resistance in potato breeding populations derived from four cross types. Plant Breed 128(3):290–294. https://doi.org/10.1111/j.1439-0523.2008.01551.x

    Article  Google Scholar 

  • Ballvora A, Hesselbach J, Niewöhner J, Leister D, Salamini F, Gebhardt C (1995) Marker enrichment and high-resolution map of the segment of potato chromosome VII harbouring the nematode resistance gene Gro1. Mol Gen Genet 249:82–90

    CAS  PubMed  Google Scholar 

  • Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30:361–371

    CAS  PubMed  Google Scholar 

  • Ballvora A, Flath K, Lübeck J, Strahwald J, Tacke E, Hofferbert H-R, Gebhardt C (2011) Multiple alleles for resistance and susceptiblity modulate the defence response in the interaction of tetraploid potato (Solanum tuberosum) with Synchytrium endobioticum pathotypes 1, 2, 6 and 18. Theor Appl Genet 123:1281–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker H (1987) Multiple components of the resistance of potatoes to potato leaf roll virus. Ann Appl Biol 111:641–648

    Google Scholar 

  • Barker H (1996) Inheritance of resistance to potato viruses Y and A in progeny obtained from potato cultivars containing gene Ry: evidence for a new gene for extreme resistance to PVA. Theor Appl Genet 93:710–716

    Google Scholar 

  • Barker H (1997) Extreme resistance to potato virus V in clones of Solanum tuberosum that are also resistant to potato viruses Y and A: evidence for a locus conferring broad-spectrum resistance. Theor Appl Genet 95:1258–1262

    Google Scholar 

  • Barker H, Harrison BD (1985) Restricted multiplication of potato leafroll virus in resistant potato genotypes. Ann Appl Biol 107:205–212

    Google Scholar 

  • Barker H, Solomon RM (1990) Evidence of simple genetic control in potato of ability to restrict potato leaf roll virus concentration in leaves. Theor Appl Genet 80:188–192

    CAS  PubMed  Google Scholar 

  • Barker H, Solomon-Blackburn RM, McNicol JW, Bradshaw JE (1994) Resistance to potato leaf roll virus multiplication in potato is under major gene control. Theor Appl Genet 88:754–758

    CAS  PubMed  Google Scholar 

  • Barone A, Ritter E, Schachtschabel U, Debener T, Salamini F, Gebhardt C (1990) Localization by restriction fragment length polymorphism map** in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Mol Gen Genet 224:177–182

    CAS  PubMed  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1997) High-resolution genetical and physical map** of the Rx gene for extreme resistance to Potato virus X in tetraploid potato. Theor Appl Genet 95:153–162

    CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21(1):73–81

    CAS  PubMed  Google Scholar 

  • Bidondo LF, Almasia N, Bazzini A, Colombo R, Hopp E, Vazquez-Rovere C, Godeas A (2019) The overexpression of antifungal genes enhances resistance to Rhizoctonia solani in transgenic potato plants without affecting arbuscular mycorrhizal symbiosis. Crop Prot 124. https://doi.org/10.1016/j.cropro.2019.05.031

  • Black W (1970) The nature of inheritance of field resistance to late blight (Phytophthora infestans) in potatoes. Am Potato J 47:279–288

    Google Scholar 

  • Black W, Mastenbroek C, Mills WR, Peterson LC (1953) A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica 2:173–179

    Google Scholar 

  • Bonierbale MW, Amoros WR, Salas E, de Jong W (2020) Potato breeding. In: Campos H, Ortiz O (eds) The potato crop: its agricultural, nutritional and social contribution to humankind. Springer, ebook, pp 163–218

    Google Scholar 

  • Bradeen JM (2011) Cloning of late blight resistance genes: strategies and progress. In: Bradeen JM, Kole C (eds) Genetics, genomics and breeding of potato. Science Publishers, Enfield, pp 153–183

    Google Scholar 

  • Bradshaw JE (2009a) Potato breeding at the Scottish Plant Breeding Station and the Scottish Crop Research Institute: 1920-2008. Potato Res 52:141–172

    Google Scholar 

  • Bradshaw JE (2009b) Breeding for field resistance to late blight of potato at SCRI. Acta Hortic 834:87–100

    Google Scholar 

  • Bradshaw JE (2016) Plant breeding: past, present and future. Springer, New York, 693p

    Google Scholar 

  • Bradshaw JE, Ramsay G (2005) Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica 146:9–19

    Google Scholar 

  • Bradshaw JE, Wastie RL, Stewart HE (1996) Assessing general combining ability for gangrene resistance by means of a glasshouse seedling test. Potato Res 39:179–183

    Google Scholar 

  • Bradshaw JE, Pande B, Bryan GJ, Hackett CA, McLaren K, Stewart HE, Waugh R (2004) Interval map** of quantitative trait loci for resistance to late blight [Phytophthora infestans (Mont.) de Bary], height and maturity in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). Genetics 168:983–995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw JE, Hackett CA, Lowe R, McLean K, Stewart HE, Tierny I, Vilaro MDR, Bryan GJ (2006) Detection of a quantitative trait locus for both foliage and tuber resistance to late blight [Phytophthora infestans (Mont.) de Bary] on chromosome 4 of a dihaploid potato clone (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 113:943–951

    CAS  PubMed  Google Scholar 

  • Bradshaw JE, Dale MFB, Mackay GR (2009) Improving the yield, processing quality and disease and pest resistance of potatoes by genotypic recurrent selection. Euphytica 170:215–227

    Google Scholar 

  • Braun S, Gevens A, Charkowski A, Allen C, Jansky S (2017) Potato common scab: a review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance. Am J Potato Res 94(4):283–296. https://doi.org/10.1007/s12230-017-9575-3

    Article  Google Scholar 

  • Brierley JL, Hilton AJ, Wale SJ, Peters JC, Gladders P, Bradshaw NJ, Ritchie F, MacKenzie K, Lees AK (2015) Factors affecting the development and control of black dot on potato tubers. Plant Pathol 64:167–177

    Google Scholar 

  • Brown CR, Thomas EE (1994) Resistance to potato leafroll virus derived from Solanum chacoense: characterization and inheritance. Euphytica 74:51–57

    Google Scholar 

  • Brown CR, Corsini D, Pavek J, Thomas PE (1997) Heritability of field resistance to potato leafroll virus in cultivated potato. Plant Breed 116:585–588

    Google Scholar 

  • Brown CR, Mojtahedi H, Zhang LH, Riga E (2009) Independent resistant reactions expressed in root and tuber of potato breeding lines with introgressed resistance to Meloidogyne chitwoodi. Phytopathology 99(9):1085–1089

    CAS  PubMed  Google Scholar 

  • Brown CR, Zhang L, Mojtahedi H (2014) Tracking the RMc1 gene for resistance to race 1 of Columbia root-knot nematode (Meloidogyne chitwoodi) in three Mexican wild potato species with different ploidies. Am J Potato Res 91:180–185

    Google Scholar 

  • Brugmans B, Hutten RGB, Rookmaker N, Visser RGF, van Eck HJ (2006) Exploitation of a marker dense linkage map of potato for positional cloning of a wart disease resistance gene. Theor Appl Genet 112:269–277

    CAS  PubMed  Google Scholar 

  • Bryan GJ, McLean K, Bradshaw JE, De Jong WS, Phillips M, Castelli L, Waugh R (2002) Map** QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theor Appl Genet 105:68–77

    CAS  PubMed  Google Scholar 

  • Bryan GJ, McLean K, Pande B, Purvis A, Hackett CA, Bradshaw JE, Waugh R (2004) Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population. Mol Breed 14:105–116

    CAS  Google Scholar 

  • Burkhart CR, Christ BJ, Haynes KG (2007) Non-additive genetic variance governs resistance to fusarium dry rot in a diploid hybrid potato population. Am J Potato Res 84:199. https://doi.org/10.1007/BF02986269

    Article  Google Scholar 

  • Byarugaba AA, Prossy N, Kashaija IN (2013) Identification of potato clones of population B3C2 with durable field resistance to late blight (Phytophthora infestans) and high yields in Uganda. Afr J Agric Res 8:3055–3059. https://doi.org/10.5897/AJAR2013.6917

    Article  Google Scholar 

  • Caligari PDS, Nachmias A (1988) Screening for field resistance to early blight (Alternaria solani) in potatoes. Potato Res 31:451–460

    Google Scholar 

  • Caligari PDS, Wastie R (1985) Assessment of a glasshouse test for measuring the resistance of potato cultivars to common scab. Potato Res 28:379–387

    Google Scholar 

  • Campos H, Ortiz O (eds) (2020) The potato crop: its agricultural, nutritional and social contribution to humankind. Springer, ebook

    Google Scholar 

  • Caromel B, Mugniery D, Lefebvre V, Andrzejewski S, Ellisseche D, Kerlan MC, Rousselle P, Rousselle-Bourgeois F (2003) Map** QTLs for resistance against Globodera pallida (Stone) Pa2/3 in a diploid potato progeny originating from Solanum spegazzinii. Theor Appl Genet 106(8):1517–1523. https://doi.org/10.1007/s00122-003-1211-6

    Article  CAS  PubMed  Google Scholar 

  • Caromel B, Mugniéry D, Kerlan M-C, Andrzejewski S, Palloix A, Ellissèche D, Rousselle-Bourgeois F, Lefebvre V (2005) Resistance quantitative trait loci originating from Solanum sparsipilum act independently on the sex ratio of Globodera pallida and together for develo** a necrotic reaction. MPMI 18:1186–1194

    CAS  PubMed  Google Scholar 

  • Carputo D, Basile B, Cardi T, Frusciante L (2000) Erwinia resistance in backcross progenies of Solanum tuberosum × S. tarijense and S. tuberosum (+) S. commersonii hybrids. Potato Res 43:135–142

    Google Scholar 

  • Carroll CP (1982) A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. J Agric Sci Camb 99:631–640

    Google Scholar 

  • Castelli L, Ramsay G, Bryan G, Neilson SJ, Phillips MS (2003) New sources of resistance to the potato cyst nematodes Globodera pallida and G. rostochiensis in the Commonwealth Potato Collection. Euphytica 129:377–386

    Google Scholar 

  • Chandel RS, Vashisth S, Soni S, Kumar R, Kumar V (2020) The potato tuber moth, Phthorimaea operculella (Zeller), in India: biology, ecology, and control. Potato Res 63(1):15–39. https://doi.org/10.1007/s11540-019-09426-z

    Article  Google Scholar 

  • Cho K-S, Kwon M, Cho J-H, Im J-S, Park Y-E, Hong S-Y, Hwang I-T, Kang J-H (2017) Characterization of trichome morphology and aphid resistance in cultivated and wild species of potato. Hortic Environ Biotechnol 58(5):450–457

    Google Scholar 

  • Cingel A, Savić J, Lazarević J, Ćosić T, Raspor M, Smigocki A (2016) Extraordinary adaptive plasticity of Colorado potato beetle: “ten-striped spearman” in the era of biotechnological warfare. Int J Mol Sci 17(9):1538. https://doi.org/10.3390/ijms17091538

    Article  PubMed  PubMed Central  Google Scholar 

  • Cockerham G (1955) Strains of potato virus X. In: Streutgers E, Beemster ABR, van der Want JPH (eds) Proceedings of the 2nd conference on potato virus diseases, Lisse-Wageningen, 1954, H. Veenman & Zonen, Wageningen, pp 89–92

    Google Scholar 

  • Cooke DEL, Lees AK, Shaw DS, Taylor MC, Prentice MWC, Bradshaw NJ, Bain RA (2008) The status of GB blight populations and the threat of oospores. Proc Crop Prot North Br 2008:217–222

    Google Scholar 

  • Coombs JJ, Douches DS, Li W, Grafius EJ, Pett WL (2003) Field evaluation of natural, engineered, and combined resistance mechanisms in potato for control of Colorado potato beetle. J Am Soc Hortic Sci 128(2):219–224

    Google Scholar 

  • Corsini DL, Pavek JJ, Davis JR (1990) Verticillium wilt resistant potato germplasm: A66107-51 and A68113-4. Am Potato J 67(8):517–525

    Google Scholar 

  • Cruickshank G, Stewart HE, Wastie RL (1982) An illustrated assessment key for foliage blight of potatoes. Potato Res 25:213–214

    Google Scholar 

  • Czajkowski R, Pérombelon MCM, van Veen JA, van der Wolf JM (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60(6):999–1013

    Google Scholar 

  • Dale MFB, Solomon RM (1988) A glasshouse test to assess the sensitivity of cultivars to tobacco rattle virus. Ann Appl Biol 112:225–229

    Google Scholar 

  • Dale MFB, Phillips MS, Ayres RM, Hancock M, Holliday M, Mackay GR, Tones SJ (1988) The assessment of the tolerance of partially resistant potato clones to damage by the potato cyst nematode Globodera pallida at different sites and in different years. Ann Appl Biol 113:79–88

    Google Scholar 

  • Davidson TMW (1980) Breeding for resistance to virus disease of the potato (Solanum tuberosum) at the Scottish Plant Breeding Station. In: Scottish Plant Breeding Station fifty-ninth annual report 1979–80. Scottish Plant Breeding Station, Pentlandfield, pp 100–108

    Google Scholar 

  • Davidson MM, Butler RC, Wratten SD, Conner AJ (2004) Resistance of potato transgenic for a cry1Ac9 gene, to Phthorimaea operculella (Lepidoptera: Gelechiidae) over field seasons and between plant organs. Ann Appl Biol 145:271–277

    CAS  Google Scholar 

  • Davie K, Pickup J (2018) Nematode pests of potatoes. In: Wale S (ed) Achieving sustainable cultivation of potatoes volume 2: production, storage and crop protection. Burleigh Dodds Science, Cambridge, pp 263–283

    Google Scholar 

  • Davies LJ, Brown CR, Elling AA (2015) Calcium is involved in the RMc1blb-mediated hypersensitive response against Meloidogyne chitwoodi in potato. Plant Cell Rep 34(1):167–177

    CAS  PubMed  Google Scholar 

  • Davis JA, Radcliffe EB, Ragsdale DW (2007) Resistance to green peach aphid, Myzus persicae (Sulzer), and potato aphid, Macrosiphum euphorbiae (Thomas), in potato cultivars. Am J Potato Res 84:259–269

    Google Scholar 

  • Day PR (1974) Genetics of host-parasite interaction. Freeman, San Francisco, 238p

    Google Scholar 

  • Dianqiu LV, **aobao Y (2018) CRISPR, a potential powerful weapon to fight potato spindle tuber viroid. J Pathogen Res 1(1):1

    Google Scholar 

  • Dinh PTY, Zhang L, Mojtahedi H, Brown CR, Elling AA (2015) Broad Meloidogyne resistance in potato based on RNA interference of effector gene 16D10. J Nematol 47(1):71–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douches DS, Grafius EJ (2005) Transformation for insect resistance. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops volume I: potato. Science Publishers, Enfield, pp 235–266

    Google Scholar 

  • Douches DS, Pett W, Santos F, Coombs J, Grafius E, Li W, Metry EA, Nasr El-Din T, Madkour M (2004) Field and storage testing Bt potatoes for resistance to potato tuberworm (Lepidoptera: Gelichiidae). J Econ Entomol 97(4):1425–1431

    CAS  PubMed  Google Scholar 

  • Douches DS, Coombs JJ, Lacey LA, Felcher KJ, Pett WL (2011) Evaluations of transgenic potatoes for resistance to potato tuberworm in the laboratory and field. Am J Potato Res 88:91–95. https://doi.org/10.1007/s12230-010-9167-y

    Article  Google Scholar 

  • Draaistra J (2006) Genetic analysis of root-knot nematode resistance in potato. Thesis Wageningen University, The Netherlands

    Google Scholar 

  • Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LCP, Zhou J, Liebrand TWH, **e C, Govers F, Robatzek S, van der Vossen EAG, Jacobsen E, Visser RGF, Kamoun S, Vleeshouwers VGAA (2015) Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat Plants 1:15034. https://doi.org/10.1038/nplants.2015.34

    Article  CAS  PubMed  Google Scholar 

  • Duncan DR, Hammond D, Zalewski J, Cudnohufsky J, Kaniewski W, Thornton M, Bookout JT, Lavrik P, Rogan GJ, Feldman-Riebe J (2002) Field performance of transgenic potato, with resistance to Colorado potato beetle and viruses. HortScience 37(2):275–276. https://doi.org/10.21273/HORTSCI.37.2.275

    Article  Google Scholar 

  • Dunnett JM (1960) Inheritance of resistance to potato root eelworm in a breeding line stemming from Solanum multidissectum Hawkes. Report of the Scottish Plant Breeding Station 1960, pp 39–46

    Google Scholar 

  • Dupuis B, Bragard C, Schumpp O (2019) Resistance of potato cultivars as a determinant factor of Potato virus Y (PVY) epidemiology. Potato Res 62(3):123–138

    Google Scholar 

  • Dziewońska MA, Waś M (1994) Diploid genotype DW.84-1457, highly resistant to potato leafroll virus (PLRV). Potato Res 37:217–224

    Google Scholar 

  • Ellenby C (1948) Resistance to the potato root eelworm. Nature 162:704

    Google Scholar 

  • Ellenby C (1952) Resistance to the potato root eelworm, Heterodera rostochiensis Wollenweber. Nature 170:1016

    CAS  PubMed  Google Scholar 

  • Enciso-Rodriguez F, Douches D, Lopez-Cruz M, Coombs J, de los Campos G (2018) Genomic selection for late blight and common scab resistance in tetraploid potato (Solanum tuberosum). Genes Genomes Genetics 8(7):2471–2481. https://doi.org/10.1534/g3.118.200273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errampalli D, Saunders JM, Holley JD (2001) Emergence of silver scurf (Helminthosporium solani) as an economically important disease of potato. Plant Pathol 50(2):141–153. https://doi.org/10.1046/j.1365-3059.2001.00555.x

    Article  CAS  Google Scholar 

  • Falloon RE (2008) Control of powdery scab of potato: towards integrated disease management. Am J Pot Res 85:253–260. https://doi.org/10.1007/s12230-008-9022-6

    Article  Google Scholar 

  • Fernow KH, Peterson LC, Plaisted RL (1970) Spindle tuber virus in seeds and pollen of infected plants. Am Potato J 47:75–80

    Google Scholar 

  • Flis B, Hennig J, Strzelczyk-Zyta D, Gebhardt C, Marczewski W (2005) The Ry-fsto gene from Solanum stoloniferum for extreme resistance to Potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Mol Breed 15:95–101

    CAS  Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–659

    Google Scholar 

  • Forbes GA (2012) Using host resistance to manage potato late blight with particular reference to develo** countries. Potato Res 55:205–216

    Google Scholar 

  • Foster SJ, Park T-H, Pel MA, Brigneti G, Sliwka J, Jagger L, van der Vossen E, Jones JDG (2009) Rpi-vnt1.1, a Tm-22 homolog from Solanum venturii, confers resistance to potato late blight. Mol Plant Microbe Interact 22:589–600

    Google Scholar 

  • Fournet S, Eoche-Bosy D, Kerlan M-C, Grenier E, Montarry J (2018) Phenotypic and genomic modifications associated with Globodera pallida adaptation to potato resistances. Potato Res 61:65–71

    CAS  Google Scholar 

  • Franco-Lara L, Barker H (1999) Characterisation of resistance to potato leafroll virus accumulation in Solanum phureja. Euphytica 108:137–144

    Google Scholar 

  • Fry W (2008) Phytophthora infestans – the plant (and R gene) destroyer. Mol Plant Pathol 9:385–402

    PubMed  PubMed Central  Google Scholar 

  • Fuglie KO (2007) Priorities for potato research in develo** countries: results of a survey. Am J Potato Res 84:353–365

    Google Scholar 

  • Fulladolsa AC, Charkowski A, Cai X, Whitworth J, Gray S, Jansky S (2019) Germplasm with resistance to Potato virus Y derived from Solanum chacoense: clones M19 (39–7) and M20 (XD3). Am J Potato Res 96(4):390–395

    Google Scholar 

  • Fuller JM, Howard HW (1974) Breeding for resistance to the white potato cyst nematode, Heterodera pallida. Ann Appl Biol 77:121–128

    Google Scholar 

  • Gallego JR, Gamez M, Cabello T (2020) Potential of the Blattisocius mali mite (Acari: Blattisociidae) as biological control agent of potato tubermoth (Lepidoptera: Gelechiidae) in stored potatoes. Potato Res 63(2):241–251

    CAS  Google Scholar 

  • Gao Y (2018) Potato tuberworm: impact and methods for control – mini review. CAB Reviews 2018 13, No. 022

    Google Scholar 

  • Gebhardt C, Mugniery D, Ritter E, Salamini F, Bonnel E (1993) Identification of RFLP markers closely linked to the H1 gene conferring resistance to Globodera rostochiensis in potato. Theor Appl Genet 85:541–544

    CAS  PubMed  Google Scholar 

  • GILB (1999) Late blight: a threat to global food security. In: Proceedings of the global initiative on late blight conference, March 16–19, 1999, Quito

    Google Scholar 

  • Goodwin SB, Drenth A (1997) Origin of the A2 mating type of Phytophthora infestans outside Mexico. Phytopathology 87:992–999

    CAS  PubMed  Google Scholar 

  • Goss EM, Tabima JF, Cooke DEL, Restrepo S, Fry WE, Forbes GA, Fieland VJ, Cardenas M, Grünwald NJ (2014) The Irish potato famine pathogen Phytophthora infestans originated in Central Mexico rather than the Andes. PNAS 111:8791–8796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goverse A, Struik PC (2009) Debate on the exploitation of natural plant diversity to create late blight resistance in potato. Potato Res 52:265–271

    Google Scholar 

  • Graebner RC, Brown CR, Ingham RE, Hagerty CH, Mojtahedi H, Quick RA, Hamlin LL, Wade N, Bamberg JB, Sathuvalli V (2018) Resistance to Meloidogyne chitwoodi identified in wild potato species. Am J Potato Res 95(6):679–686

    Google Scholar 

  • Groth J, Song Y, Kellermann A, Schwarzfischer A (2013) Molecular characterisation of resistance against potato wart races 1, 2, 6 and 18 in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). J Appl Genet 54:169–178

    CAS  PubMed  Google Scholar 

  • Guchi E (2015) Disease management practice on potato (Solanum tuberosum L.) in Ethiopia. World J Agric Res 3(1):34–42

    Google Scholar 

  • Hackett CA, Bradshaw JE, Bryan GJ (2014) QTL map** in autotetraploids using SNP dosage information. Theor Appl Genet 127:1885–1904. https://doi.org/10.1007/s00122-014-2347-2. Epub 2014 Jul 1

    Article  PubMed  PubMed Central  Google Scholar 

  • Hackett CA, Boskamp B, Vogogias A, Preedy K, Milne I (2017) TetraploidSNPMap: software for linkage analysis and QTL map** in autotetraploid populations using SNP dosage data. J Hered 108:438–442

    CAS  Google Scholar 

  • Hämäläinen JH, Watanabe KN, Valkonen JPT, Arihara A, Plaisted RL, Pehu E, Miller L, Slack SA (1997) Map** and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theor Appl Genet 94:192–197

    Google Scholar 

  • Hämäläinen JH, Sorri VA, Watanabe KN, Gebhardt C, Valkonen JPT (1998) Molecular examination of a chromosome region that controls resistance to potato Y and A potyviruses in potato. Theor Appl Genet 96:1036–1043

    Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Vossen JH, Visser RGF (2016) Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: scientific and societal advances in the DuRPh project. Potato Res 59:35–66

    CAS  Google Scholar 

  • Hehl R, Faurie E, Hesselbach J, Salamani F, Whitham S, Baker B, Gebhardt C (1999) TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theor Appl Genet 98:379–386

    CAS  Google Scholar 

  • Hein I, Birch PRJ, Danan S, Lefebvre V, Odeny DA, Gebhardt C, Trognitz F, Bryan GJ (2009) Progress in map** and cloning qualitative and quantitative resistance against Phytophthora infestans in potato and its wild relatives. Potato Res 52:215–227

    Google Scholar 

  • Hohl HR, Iselin K (1984) Strains of Phytophthora infestans with A2 mating type behaviour. Trans Br Mycol Soc 83:529–530

    Google Scholar 

  • Howard HW, Cole CS, Fuller JM (1970) Further sources of resistance to Heterodera rostochiensis Woll. in the Andigena potato. Euphytica 19:210–216

    Google Scholar 

  • Huang S, Vleeshouwers VG, Werij JS, Hutten RC, van Eck HJ, Visser RG, Jacobsen E (2004) The R3 resistance to Phytophthora infestans in potato is conferred by two closely linked R genes with distinct specificities. Mol Plant Microbe Interact 17:428–435

    Google Scholar 

  • Huang S, van der Vossen EA, Kuang H, Vleeshouwers VG, Zhang N, Borm TJ, van Eck HJ, Baker B, Jacobsen E, Visser RG (2005) Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J 42:251–261

    CAS  PubMed  Google Scholar 

  • Huet G (2014) Breeding for resistances to Ralstonia solanacearum. Front Plant Sci 5:715. https://doi.org/10.3389/fpls.2014.00715

    Article  PubMed  PubMed Central  Google Scholar 

  • Huijsman CA (1960) Some data on the resistance against the potato root-eelworm (Heterodera rostochiensis W.) in Solanum kurtzianum. Euphytica 9:185–190

    Google Scholar 

  • Jacobs JME, van Eck HJ, Horsman K, Arens PFP, Verkerk-Bakker B, Jacobsen E, Pereira A, Stiekema WJ (1996) Map** of resistance to the potato cyst nematode Globodera rostochiensis from the wild potato species Solanum vernei. Mol Breed 2:51–60

    CAS  Google Scholar 

  • Janse J, Beld D, van Den H (2004) Introduction to Europe of Ralstonia solanacearum biovar 2, race 3 in Pelargonium zonale cuttings. J Plant Pathol 86:147–155

    Google Scholar 

  • Jansky S (2000) Breeding for disease resistance in potato. Plant Breed Rev 19:69–155

    Google Scholar 

  • Jansky SH (2009) Identification of Verticillium wilt resistance in U.S. potato breeding programs. Am J Potato Res 86:504–512. https://doi.org/10.1007/s12230-009-9107-x

    Article  Google Scholar 

  • Janssen R, Bakker J, Gommers FJ (1991) Mendelian proof for a gene-for-gene relationship between virulence of Globodera rostochiensis and the H1 resistance gene in Solanum tuberosum ssp. andigena CPC 1673. Revue Nematol 14:213–219

    Google Scholar 

  • Janssen GJW, von Norel A, Verkeerk-Bakker B, Janssen R (1996) Resistance to Meloidogyne chitwoodi, M fallax and M hapla in wild tuber-bearing Solanum spp. Euphytica 92:287–294

    Google Scholar 

  • Jeffries C, Lacomme C (2018) Viruses affecting potatoes. In: Wale S (ed) Achieving sustainable cultivation of potatoes volume 2: production, storage and crop protection. Burleigh Dodds Science Publishing, Cambridge, pp 209–241

    Google Scholar 

  • Jo KR (2013) Unveiling and deploying durability of late blight resistance in potato from natural stacking to cisgenic stacking. PhD thesis. Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Johnson DA, Geary B, Tsror L (2018) Potato black dot – the elusive pathogen, disease development and management. Am J Potato Res 95(4):340–350

    Google Scholar 

  • Jones RAC (1979) Resistance to potato leaf roll virus in Solanum brevidens. Potato Res 22:149–152

    Google Scholar 

  • Jones RAC (1982) Breakdown of Potato virus X resistance gene NX: selection of a group four strain from strain group three. Plant Pathol 31:325–331

    Google Scholar 

  • Jones RAC (1985) Further studies on resistance-breaking strains of potato virus X. Plant Pathol 34(2):182–189. https://doi.org/10.1111/j.1365-3059.1985.tb01348.x

    Article  Google Scholar 

  • Jones RW, Perez FG (2019) Assessing possible mechanisms of resistance to early blight caused by Alternaria solani. Potato Res. https://doi.org/10.1007/s11540-019-9420-9

  • Jones JDG, Witek K, Verweij W, Jupe F, Cooke D, Dorling S, Tomlinson L, Smoker M, Perkins S, Foster S (2014) Elevating crop disease resistance with cloned genes. Phil Trans R Soc B 369:20130087. https://doi.org/10.1098/rstb.2013.0087

    Article  PubMed  PubMed Central  Google Scholar 

  • Judelson HS, Spilman LJ, Shattock RC (1995) Genetic map** and non-Mendelian segregation of mating type loci in the Oomycete Phytophthora infestans. Genetics 141:503–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khaled W, Fekih IB, Nahdi S, Souissi R, Boukhris-Bouhachem S (2018) Transmission efficiency of Potato leafroll virus by four potato colonizing aphid species in Tunisian potato fields. Potato Res 61:89–96

    Google Scholar 

  • Khorrami F, Mehrkhou F, Mahmoudian M, Ghosta Y (2018) Pathogenicity of three different entomopathogenic fungi, Metarhizium anisopliae IRAN 2252, Nomuraea rileyi IRAN 1020C and Paecilomyces tenuipes IRAN 1026C against the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Potato Res 61:297–308. https://doi.org/10.1007/s11540-018-9378-z

    Article  Google Scholar 

  • Kim HJ, Lee HR, Jo KR, Mahdi Mortazavian SM, Jan Huigen D, Evenhuis B, Kessel G, Visser RGF, Jacobsen E, Vossen JH (2012) Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor Appl Genet 124:923–935. https://doi.org/10.1007/s00122-011-1757-7

    Article  CAS  PubMed  Google Scholar 

  • Kort J, Ross H, Rumpenhorst HJ, Stone AR (1977) An international scheme to identifying and classifying pathotypes of potato cyst-nematodes Globodera rostochiensis and G. pallida. Nematologica 23:333–339

    Google Scholar 

  • Kouassi AB, Kerlan M-C, Caromel B, Dantec J-P, Fouville D, Manzanares-Dauleux M, Ellisseche D, Mugniery D (2006) A major gene mapped on chromosome XII is the main factor of a quantitatively inherited resistance to Meloidogyne fallax in Solanum sparsipilum. Theor Appl Genet 112:699–707. https://doi.org/10.1007/s00122-005-0173-2

    Article  CAS  PubMed  Google Scholar 

  • Kreike CM, De Koning JRA, Vinke JH, Van Ooijen JW, Stiekema WJ (1994) Quantitatively inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theor Appl Genet 88:764–769

    CAS  PubMed  Google Scholar 

  • Kriel CJ, Jansky SH, Gudmestad NC, Ronis DH (1995) Immunity species to Clavibacter michiganensis subsp. sepedonicus: inheritance of immunity in Solanum acaule. Euphytica 82(2):133–139

    Google Scholar 

  • Kroschel J, Schaub B (2013) Biology and ecology of potato tuber moths as major pests of potato. In: Giordanengo P, Vincent C, Alyokhin A (eds) Insect pests of potato: global perspectives on biology and management. Elsevier, Oxford, pp 165–192

    Google Scholar 

  • Kroschel J, Mujica N, Okonya J, Alyokhin A (2020) Insect pests affecting potatoes in tropical, subtropical, and temperate regions. In: Campos H, Ortiz O (eds) The potato crop: its agricultural, nutritional and social contribution to humankind. Springer, ebook, pp 251–306

    Google Scholar 

  • Kuhl JC, Hanneman RE Jr, Havey MJ (2001) Characterization and map** of Rpi1, a late-blight resistance locus from diploid (1EBN) Mexican Solanum pinnatisectum. Mol Gen Genet 265:977–985

    CAS  Google Scholar 

  • Kumar M, Singh JK, Kumar S, Kumar A (2017) A comprehensive overview on black scurf of potato. Int J Curr Microbiol App Sci 6(10):4981–4994

    Google Scholar 

  • Lebecka R (2017) Screening for potato resistance to blackleg and soft rot. Plant Breed Seed Sci 75:97–104. https://doi.org/10.1515/plass-2017-0013

    Article  Google Scholar 

  • Lebecka R, Kistowski M, Dębski J, Szajko K, Murawska Z, Marczewski W (2019) Quantitative proteomic analysis of differentially expressed proteins in tubers of potato plants differing in resistance to Dickeya solani. Plant Soil 441:317–329. https://doi.org/10.1007/s11104-019-04125-7

    Article  CAS  Google Scholar 

  • Lees AK (2018) Fungal diseases affecting potato storage. In: Wale S (ed) Achieving sustainable cultivation of potatoes volume 2: production, storage and crop protection. Burleigh Dodds Science Publishing, Cambridge, pp 179–188

    Google Scholar 

  • Lees AK, Bradshaw JE (2001) Inheritance of resistance to Fusarium sulphureum in crosses between S. tuberosum potato cultivars measured on field and glasshouse grown tubers. Potato Res 44:147–152

    Google Scholar 

  • Lees AK, De Maine MJ, Nicolson MJ, Bradshaw JE (2000) Long-day-adapted Solanum phureja as a source of resistance to blackleg caused by Erwinia carotovora subsp. atroseptica. Potato Res 43:279–285

    Google Scholar 

  • Lees AK, Brierley JL, Stewart JA, Hilton AJ, Wale SJ, Gladders P, Bradshaw NJ, Peters JC (2010) Relative importance of seed-tuber and soilborne inoculum in causing black dot disease of potato. Plant Pathol 59:693–702

    Google Scholar 

  • Lees AK, Stewart JA, Lynott JS, Carnegie SF, Campbell H, AMI R (2012) The effect of a dominant Phytophthora infestans genotype (13_A2) in Great Britain on host resistance to foliar late blight in commercial potato cultivars. Potato Res 55:125–134

    Google Scholar 

  • Leonards-Schippers C, Gieffers W, Salamini F, Gebhardt C (1992) The R1 gene conferring race-specific resistance to Phytophthora infestans in potato is located on potato chromosome V. Mol Gen Genet 233:278–283

    CAS  PubMed  Google Scholar 

  • Li X, van Eck HJ, Rouppe van der Voort JNAM, Huigen DJ, Stam P, Jacobsen E (1998) Autotetraploids and genetic map** using common AFLP markers: the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4. Theor Appl Genet 96:1121–1128

    CAS  Google Scholar 

  • Li C, Wang J, Chien DH, Chujoy E, Song B, VanderZaag P (2010) Cooperation-88: a high yielding, multi-purpose, late blight resistant cultivar growing in Southwest China. Am J Potato Res 88:190–194

    Google Scholar 

  • Li G, Huang S, GuoX LY, YangY GZ, Kuang H, Rietman H, Bergervoet M, Vleeshouwers VGAA, van der Vossen E, Qu D, Visser RGA, Jacobsen E, Vossen JH (2011) Cloning and characterization of R3b; members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Mol Plant Microbe Interact 24:1132–1142

    Google Scholar 

  • Li H, Wang Z, Hu X, Shang W, Shen R, Guo C, Guo Q, Subbarao KV (2019) Assessment of resistance in potato cultivars to Verticillium wilt caused by Verticillium dahliae and Verticillium nonalfalfae. Plant Dis 103(6):1357–1362. https://doi.org/10.1094/PDIS-10-18-1815-RE

    Article  PubMed  Google Scholar 

  • Lima MF, Lopes CA, de Melo PE (1996) Selection of potato genotypes at the seedling stage for resistance to bacterial wilt. Pesq Agrop Brasileira 31(4):249–257

    Google Scholar 

  • Liu Z, Halterman D (2006) Identification and characterization of RB-orthologous genes from the late blight resistant wild potato species Solanum verrucosum. Phys Mol Plant Pathol 69:230–239

    CAS  Google Scholar 

  • Lokossou AA, Park T-H, van Arkel G, Arens M, Ruyter-Spira C, Morales J, Whisson SC, Birch PRJ, Visser RGF, Jacobsen E, van der Vossen EAG (2009) Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol Plant-Microbe Interact 22:630–641

    CAS  PubMed  Google Scholar 

  • Lopes CA, Buso JA, Accatino P (1993) Screening CIP potato germplasm for resistance to bacterial wilt in Brazil: methods and preliminary results. Bacterial Wilt Newsl 9:3–5

    Google Scholar 

  • Luthra SK, Gupta VK, Tiwari JK, Kumar V, Bhardwaj V, Sood S, Dalamu, Kaur RP, Kumar R, Vanishree G, Kumar D, Mhatre P, Chakrabarti SK (2020) Potato breeding in India. CPRI technical bulletin no 74 (revised), ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India

    Google Scholar 

  • Maharijaya A, Vosman B (2015) Managing the Colorado potato beetle; the need for resistance breeding. Euphytica 204(3):487–501

    Google Scholar 

  • Malcolmson JF (1969) Races of Phytophthora infestans occurring in Great Britain. Trans Br Mycol Soc 53:417–423

    Google Scholar 

  • Malcolmson JF (1976) Assessment of field resistance to blight (Phytophthora infestans) in potatoes. Trans Br Mycol Soc 67:321–325

    Google Scholar 

  • Malcolmson JF, Black W (1966) New R genes in Solanum demissum Lindl. and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica 15:199–203

    Google Scholar 

  • Marczewski W, Hennig J, Gebhardt C (2002) The Potato virus S resistance gene Ns maps to potato chromosome VIII. Theor Appl Genet 105:564–657

    CAS  PubMed  Google Scholar 

  • Marczewski W, Strzelczyk-Zyta D, Hennig J, Witek K, Gebhardt C (2006) Potato chromosomes IX and XI carry genes for resistance to potato virus M. Theor Appl Genet 112:1232–1238

    CAS  PubMed  Google Scholar 

  • Martin FN, Zhang Y, Cooke DEL, Coffey MD, Grünwald NJ, Fry WE (2019) Insights into evolving global populations of Phytophthora infestans via new complementary mtDNA haplotype markers and nuclear SSRs. PLoS One 14(1):1–24. https://doi.org/10.1371/journal.pone.0208606

    Article  CAS  Google Scholar 

  • McGrath JM, Williams CE, Haberlach GT, Wielgus SM, Uchytil TF, Helgeson JP (2002) Introgression and stabilization of Erwinia tuber soft rot resistance into potato after somatic hybridization of Solanum tuberosum and S. brevidens. Am J Potato Res 79(1):19–24

    Google Scholar 

  • Meade F, Hutten R, Wagener S, Prigge V, Dalton E, Kirk HG, Griffin D, Milbourne D (2020) Detection of novel QTLs for late blight resistance derived from the wild potato species Solanum microdontum and Solanum pampasense. Genes 11:732. https://doi.org/10.3390/genes11070732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merz U, Falloon RE (2017) Proceedings of the 3rd international powdery scab workshop, Einsiedeln, Switzerland, July 18–21, 2016. Potato Res 60:195–215

    Google Scholar 

  • Merz U, Lees AK, Sullivan L, Schwärzel R, Hebeisen T, Kirk HG, Bouchek-Mechiche K, Hofferbert HR (2012) Powdery scab resistance in Solanum tuberosum: an assessment of cultivar × environment effect. Plant Pathol 61(1):29–36. https://doi.org/10.1111/j.13653059.2011.02489.x

    Article  Google Scholar 

  • Mihovilovich E, Alarcón L, Pérez AL, Alvarado J, Arellano C, Bonierbale M (2007) High levels of heritable resistance to Potato leafroll virus (PLRV) in Solanum tuberosum subsp. andigena. Crop Sci 47:1091–1103. https://doi.org/10.2135/cropsci2006.06.0369

    Article  Google Scholar 

  • Minnis ST, Haydock PPJ, Ibrahim SK, Grove IG (2002) Potato cyst nematodes in England and Wales-occurrence and distribution. Ann Appl Biol 140:187–195

    Google Scholar 

  • Mohammed A, Douches DS, Pett W, Grafius E, Coombs J, Liswidowati W, Li W, Madkour MA (2000) Evaluation of potato tuber moth (Lepidoptera: Gelechiidae) resistance in tubers of Bt-cry5 transgenic potato lines. J Econ Entomol 93:472–476

    CAS  PubMed  Google Scholar 

  • Mohan SK, Davis JR, Corsini DL, Sorensen LH, Pavek JJ (1990) Reaction of potato clones and accessions of Solanum spp. to Verticillium dahliae Kleb. and its toxin. Potato Res 33(4):449–458

    Google Scholar 

  • Moreira A, Jones RAC, Fribourg CE (1980) Properties of a resistant-breaking strain of potato virus X. Ann Appl Biol 95:93–103

    Google Scholar 

  • Mori K, Mukojima N, Nakao T, Tamiya S, Sakamoto Y, Sohbaru N, Hayashi K, Watanuki H, Nara K, Yamazaki K, Ishii T, Hosaka K (2012) Germplasm release: Saikai 35, a male and female fertile breeding line carrying Solanum phureja-derived cytoplasm and potato cyst nematode resistance (H1) and Potato virus Y resistance (Rychc) genes. Am J Potato Res 89:63–72

    Google Scholar 

  • Mujica N, Kroschel J (2013) Pest intensity-crop loss relationships for the leafminer fly Liriomyza huidobrensis (Blanchard) in different potato (Solanum tuberosum L.) varieties. Crop Prot 47:6–16

    Google Scholar 

  • Muller KO, Black W (1951) Potato breeding for resistance to blight and virus diseases during the last hundred years. Z Pflanzenzuchtung 31:305–318

    Google Scholar 

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455. https://doi.org/10.1016/j.meegid.2014.01.011

    Article  PubMed  Google Scholar 

  • Nachmias A, Caligari PDS, Mackay GR, Livescu L (1988) The effects of Alternaria solani and Verticillium dahliae on potatoes growing in Israel. Potato Res 31:443–450

    Google Scholar 

  • Naess SK, Bradeen JM, Wielgus SM, Haberlach GT, McGrath JM, Helgeson JP (2000) Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theor Appl Genet 101:697–704

    CAS  Google Scholar 

  • Nally DP (2011) Human encumbrances. University of Notre Dame Press, Notre Dame, 348p

    Google Scholar 

  • Navarro FM, Rak KT, Banks E, Bowen BD, Higgins C, Palta JP (2015) Strategies for selecting stable common scab resistant clones in a potato breeding program. Am J Potato Res 92:326–338

    CAS  Google Scholar 

  • NIAB TAG (2019) Potatoes 2019. NIAB, Cambridge

    Google Scholar 

  • Obidiegwu JE, Flath K, Gebhardt C (2014) Managing potato wart: a review of present research status and future perspective. Theor Appl Genet 127(4):763–780. https://doi.org/10.1007/s00122-014-2268-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohbayashi K (2019) The Rx gene derived USDA 41956 and Rx1 gene derived CPC 1673 confer equal resistance to the migration of Potato virus X from potato leaves to tubers. Euphytica 215:90

    Google Scholar 

  • Orłowska E, Basile A, Kandzia I, Llorente B, Kirk HG, Cvitanich C (2012) Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira. J Exp Bot 63:4765–4779

    PubMed  PubMed Central  Google Scholar 

  • Ortiz R (2001) The state of the use of potato genetic diversity. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CAB International, Wallingford, pp 181–200

    Google Scholar 

  • Ortiz R, Iwanaga M, Raman KV, Palacios M (1990) Breeding for resistance to potato tuber moth, Phthorimaea operculella (Zeller), in diploid potatoes. Euphytica 50(2):119–125

    Google Scholar 

  • Paal J, Henselewski H, Muth J, Meksem K, Menéndez CM, Salamini F, Ballvora A, Gebhardt C (2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J 38(2):285–297

    CAS  PubMed  Google Scholar 

  • Park TH, Gros J, Sikkema A, Vleeshouwers VG, Muskens M, Allefs S, Jacobsen E, Visser RG, van der Vossen EAG (2005a) The late blight resistance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Mol Plant Microb Interact 18:722–729

    CAS  Google Scholar 

  • Park TH, Vleeshouwers VG, Huigen DJ, van der Vossen EAG, van Eck HJ, Visser RG (2005b) Characterization and high-resolution map** of a late blight resistance locus similar to R2 in potato. Theor Appl Genet 111:591–597

    CAS  PubMed  Google Scholar 

  • Park J, Hackett CA, Dandurand L-M, Wang X, Jong WS (2019) QTL for resistance to Globodera rostochiensis pathotype Ro2 and G. pallida pathotype Pa2/3 in autotetraploid potato. Am J Potato Res. https://doi.org/10.1007/s12230-019-09745-4

  • Parrott DM (1981) Evidence for a gene-for-gene relationship between resistance gene H1 from Solanum tuberosum ssp. andigena and a gene in Globodera rostochiensis, and between H2 from S. multidissectum and a gene in G. pallida. Nematologica 27:372–382

    Google Scholar 

  • Parsa S, Ccanto R, Olivera E, Scurrah M, Alcázar J, Rosenheim JA (2012) Explaining Andean potato weevils in relation to local and landscape features: a facilitated ecoinformatics approach. PLoS One 7(5):e36533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil VU, Gopal J, Singh BP (2012) Improvement for bacterial wilt resistance in potato by conventional and biotechnological approaches. Agric Res 1(4):299–316. https://doi.org/10.1007/s40003-012-0034-6

    Article  CAS  Google Scholar 

  • Pavek JJ, Corsini DL (1994) Inheritance of resistance to warm-growing-season fungal diseases. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 403–409

    Google Scholar 

  • Pel MA, Foster SJ, Park TH, Rietman H, van Arkel G, Jones JDG, Van Eck HJ, Jacobsen E, Visser RGF, Van der Vossen EAG (2009) Map** and cloning of late blight resistance genes from Solanum venturii using an interspecific candidate gene approach. Mol Plant Microbe Interact 22:601–615

    Google Scholar 

  • Perry RN, Moens M, Jones JT (2018) Cyst nematodes. CABI, Wallingford. 488p

    Google Scholar 

  • Phillips MS (1994) Inheritance of resistance to nematodes. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 319–337

    Google Scholar 

  • Phillips MS, Forrest JMS, Wilson LA (1980) Screening for resistance to potato cyst nematodes using closed containers. Ann Appl Biol 96:317–322. https://doi.org/10.1111/j.1744-7348.1980.tb04782.x

    Article  Google Scholar 

  • Plaisted RL, Tingey WM, Steffens JC (1992) The germplasm release of NYL 235–4, a clone with resistance to the Colorado potato beetle. Am Potato J 69(12):843–846

    Google Scholar 

  • Plich J, Przetakiewicz J, Śliwka J, Flis B, Wasilewicz-Flis I, Zimnoch-Guzowska E (2018) Novel gene Sen2 conferring broad-spectrum resistance to Synchytrium endobioticum mapped to potato chromosome XI. Theor Appl Genet 131(11):2321–2331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Priegnitz U, Lommen WJM, van der Vlugt RAA, Struik PC (2019) Impact of positive selection on incidence of different viruses during multiple generations of potato seed tubers in Uganda. Potato Res 62:1–30

    Google Scholar 

  • Priou S, Gutarra L, Aley P (1999) Highly sensitive detection of Ralstonia solanacearum in latently infected potato tubers and soil by post-enrichment ELISA on nitrocellulose membrane. EPPO/OEPP Bull 29:117–125

    Google Scholar 

  • Przetakiewicz J (2008) Assessment of the resistance of potato cultivars to Synchytrium endobioticum (Schilb.) Perc. In: Poland – EPPO Bull, vol 38, pp 211–215

    Google Scholar 

  • Radcliffe EB, Lagnaoui A (2007) Insect pests of potato. In: Vreugdenhil D (ed) Potato biology and biotechnology advances and perspectives. Elsevier, Oxford, pp 543–567

    Google Scholar 

  • Rashidi M, Novy RG, Wallis CM, Rashed A (2017) Characterization of host plant resistance to zebra chip disease from species-derived potato genotypes and the identification of new sources of zebra chip resistance. PLoS One 12(8):e0183283. https://doi.org/10.1371/journal.pone.0183283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauscher GM, Smart CD, Simko I, Bonierbale M, Mayton H, Greenland A, Fry WE (2006) Characterization and map** of Rpi-ber, a novel potato late blight resistance gene from Solanum berthaultii. Theor Appl Genet 112:674–687

    CAS  PubMed  Google Scholar 

  • Rietman H, Bijsterbosch G, Cano LM, Lee HR, Vossen JH, Jacobsen E, Visser RGF, Kamoun S, Vleeshouwers VGAA (2012) Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors. Mol Plant Microbe Interact 25:910–919

    Google Scholar 

  • Ristić D, Vučurović I, Kuzmanović S, Pfaf-Dolovac E, Aleksić G, Vučurović A, Starović M (2019) The incidence and genetic diversity of Potato virus S in Serbian seed potato crops. Potato Res 62:31–46

    Google Scholar 

  • Ross H (1962) Über die Vererbung der Resistenz gegen den Kartoffelnematoden (Heterodera rostochiensis Woll.) in Kreuzungen von Solanum famatinae Bitt. Et Wittm. mit Solanum tuberosum L. und mit S. chacoense Bitt. Der Züchter 32:74–80

    Google Scholar 

  • Ross H (1986) Potato breeding – problems and perspectives. Advs in Plant Breed 13, Paul Parey, Berlin/Hamburg

    Google Scholar 

  • Rouppe van der Voort J, Wolters P, Folkertsma R, Hutten R, van Zandvoort P, Vinke H, Kanyuka K, Bendahmane A, Jacobsen E, Janssen R, Bakker J (1997) Map** of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theor Appl Genet 95:874–880

    CAS  Google Scholar 

  • Rouppe van der Voort J, Lindeman W, Folkertsma R, Hutten R, Overmars H, van der Vossen E, Jacobsen E, Bakker J (1998) A QTL for broad-spectrum resistance to cyst nematode species (Globodera spp.) maps to a resistance gene cluster in potato. Theor Appl Genet 96:654–661

    CAS  Google Scholar 

  • Rouppe van der Voort J, van der Vossen E, Bakker E, Overmars H, van Zandroort P, Hutten R, Lankhorst RK, Bakker J (2000) Two additive QTLs conferring broad-spectrum resistance in potato to Globodera pallida are localized on resistance gene clusters. Theor Appl Genet 101:1122–1130

    CAS  Google Scholar 

  • Roush RT (1998) Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil Trans R Soc Lond B Biol Sci 353(1376):1777–1786. https://doi.org/10.1098/rstb.1998.0330

    Article  CAS  Google Scholar 

  • Salaman RN (1921) Degeneration of potatoes. Report on the International potato conference. Royal Horticultural Society, London, pp 79–91

    Google Scholar 

  • Sandbrink JM, Colon LT, Wolters PJCC, Stiekema WJ (2000) Two related genotypes of Solanum microdontum carry different segregating alleles for field resistance to Phytophthora infestans. Mol Breed 6:215–225

    CAS  Google Scholar 

  • Sato M, Nishikawa K, Komura K, Hosaka K (2006) Potato virus Y resistance gene, Rychc, mapped to the distal end of potato chromosome 9. Euphytica 149:367–372

    CAS  Google Scholar 

  • Seenivasan N (2020) Management of potato cyst nematodes using liquid bio-formulations of Pseudomonas fluorescens, Purpureocillium lilacinum and Trichoderma viride. Potato Res 63(4):479–496

    Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    CAS  Google Scholar 

  • Simko I, Haynes KG (2017) Maturity-adjusted resistance of potato (Solanum tuberosum L.) cultivars to Verticillium wilt caused by Verticillium dahliae. Am J Potato Res 94:173–177

    CAS  Google Scholar 

  • Simko I, Jansky S, Stephenson S, Spooner D (2007) Genetics of resistance to pests and disease. In: Vreugdenhil D (ed) Potato biology and biotechnology advances and perspectives. Elsevier, Oxford, pp 117–155

    Google Scholar 

  • Simmonds NW (1969) Prospects of potato improvement. Scottish Plant Breeding Station Forty-Eighth Annual Report 1968-69, pp 18–38

    Google Scholar 

  • Simmonds NW (1991) Genetics of horizontal resistance to diseases of crops. Biol Rev 66:189–241

    Google Scholar 

  • Simmonds NW, Wastie RL (1987) Assessment of horizontal resistance to late blight of potatoes. Ann Appl Biol 111:213–221

    Google Scholar 

  • Sjolund MJ, Kelly R, Saddler GS, Kenyon DM (2018) Bacterial diseases affecting potatoes. In: Wale S (ed) Achieving sustainable cultivation of potatoes volume 2: production, storage and crop protection. Burleigh Dodds Science Publishing, Cambridge, pp 189–208

    Google Scholar 

  • Śliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E (2006) The novel, major locus Rpi-phu1 for late blight resistance maps to potato chromosome IX and is not correlated with long vegetation period. Theor Appl Genet 113:685–695

    PubMed  Google Scholar 

  • Smilde WD, Brigneti G, Jagger L, Perkins S, Jones JD (2005) Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theor Appl Genet 110:252–258

    Google Scholar 

  • Soloman-Blackburn RM, Stewart HE, Bradshaw JE (2007) Distinguishing major-gene from field resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) and selecting for high levels of field resistance. Theor Appl Genet 115:141–149

    Google Scholar 

  • Solomon-Blackburn RM, Barker H (1993) Resistance to potato leafroll luteovirus can be greatly improved by combining two independent types of heritable resistance. Ann Appl Biol 122:329–336

    Google Scholar 

  • Solomon-Blackburn RM, Barker H (2001a) A review of host major-gene resistance to potato viruses X, Y, A and V in potato: genes, genetics and mapped locations. Heredity 86:8–16. https://doi.org/10.1046/j.1365-2540.2001.00798.x

    Article  CAS  PubMed  Google Scholar 

  • Solomon-Blackburn RM, Barker H (2001b) Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity 86:17–35

    CAS  PubMed  Google Scholar 

  • Solomon-Blackburn RM, Barker H, Bradshaw JE, De Jong W (2003/4) Evidence that resistance to potato leafroll virus accumulation in tetraploid Solanum tuberosum L. is controlled by one or a few major genes that are not complementary. Potato Res 46:137–145

    Google Scholar 

  • Solomon-Blackburn RM, Nikan J, Barker H (2008) Mechanism of strong resistance to Potato leafroll virus infection in a clone of potato (Solanum tuberosum). Ann Appl Biol 152:339–347

    Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y-S, Hepting L, Schweizer G, Hartl L, Wenzel G, Schwarzfischer A (2005) Map** of extreme resistance to PVY (Rysto) on chromosome XII using anther-culture-derived primary dihaploid potato lines. Theor Appl Genet 111:879–887

    CAS  PubMed  Google Scholar 

  • Stewart HE, Bradshaw JE (1993) A glasshouse test for assessing resistance to early blight (Alternaria solani). Potato Res 36:35–42

    Google Scholar 

  • Stewart HE, Bradshaw JE (2001) Assessment of the field resistance of potato genotypes with major gene resistance to late blight (Phytophthora infestans (Mont.) de Bary) using inoculum comprised of two complementary races of the fungus. Potato Res 44:41–52

    Google Scholar 

  • Stewart HE, Wastie RL (1989) A rapid scoring technique for potato tuber disease assessment. Potato Res 32:353–357

    Google Scholar 

  • Stewart HE, Flavelle PH, McCalmont DC, Wastie RL (1983a) Correlation between glasshouse and field tests for resistance to foliage blight caused by Phytophthora infestans. Potato Res 26:41–48

    Google Scholar 

  • Stewart HE, McCalmont DC, Wastie RL (1983b) The effect of harvest date and the interval between harvest and inoculation on the assessment of the resistance of potato tubers to late blight. Potato Res 26:101–107

    Google Scholar 

  • Stewart HE, Taylor K, Wastie RL (1983c) Resistance to late blight in foliage (Phytophthora infestans) of potatoes assessed as true seedlings and as adult plants in the glasshouse. Potato Res 26:363–366

    Google Scholar 

  • Stewart HE, Bradshaw JE, Wastie RL, Mackay GR, Erlich O, Livescu L, Nachmias A (1994a) Assessing progenies of potato for resistance to early blight. Potato Res 37:257–269

    Google Scholar 

  • Stewart HE, Bradshaw JE, Wastie RL (1994b) Correlation between resistance to late blight in foliage and tubers in potato clones from parents of contrasting resistance. Potato Res 37:429–434

    Google Scholar 

  • Stewart HE, Bradshaw JE, Pande B (2003) The effect of the presence of R-genes for resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) on the underlying level of field resistance. Plant Pathol 52:193–198

    Google Scholar 

  • Strachan SM, Armstrong MR, Kaur A, Wright KM, Lim TY, Baker K, Jones J, Bryan G, Blok V, Hein I (2019) Map** the H2 resistance effective against Globodera pallida pathotype Pa1 in tetraploid potato. Theor Appl Genet 132:1283–1294. https://doi.org/10.1007/s00122-019-03278-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Świeżynski KM, Domański L, Zarzycka H, Zimnoch-Guzowska E (2000) The reaction of potato differentials to Phytophthora infestans isolates collected in nature. Plant Breed 119:119–126

    Google Scholar 

  • Szajko K, Yin Z, Marczewski W (2019) Accumulation of miRNA and mRNA targets in potato leaves displaying temperature-dependent responses to Potato virus Y. Potato Res 62(4):379–392

    CAS  Google Scholar 

  • Tan MYA, Hutten RCB, Celis C, Park TH, Niks RE, Visser RGF, van Eck HJ (2008) The Rpi-mcd1 locus from Solanum microdontum involved in resistance to Phytophthora infestans, causing a delay in infection, maps on potato chromosome 4 in a cluster of NBS-LRR genes. Mol Plant Microbe Interact 21:909–918

    Google Scholar 

  • Tan MYA, Park T-H, Alles R, Hutten RCB, Visser RGF, van Eck HJ (2009) GpaXItarl originating from Solanum tarijense is a major resistance locus to Globodera pallida and is localised on chromosome 11 of potato. Theor Appl Genet 119(8):1477–1487. https://doi.org/10.1007/s00122-009-1149-4

  • Tegg RS, Wilson CR (2010) Relationship of resistance to common scab disease and tolerance to thaxtomin A toxicity within potato cultivars. Eur J Plant Pathol 128(2):143–148

    CAS  Google Scholar 

  • Thresh JM (1998) In memory of James Edward Vanderplank 1909-1997. Plant Pathol 47:114–115

    Google Scholar 

  • Tomczynska I, Stefanczyk E, Chmielarz M, Karasiewicz B, Kaminski P, Jones JD, Lees AK, Sliwka J (2014) A locus conferring effective late blight resistance in potato cultivar Sarpo Mira maps to chromosome XI. Theor Appl Genet 127:647–657

    PubMed  Google Scholar 

  • Toxopeus HJ (1964) Treasure-digging for blight resistance in potatoes. Euphytica 13:206–222

    Google Scholar 

  • Toxopeus HJ, Huijsman CA (1953) Breeding for resistance to potato root eelworm. Euphytica 2:180–186

    Google Scholar 

  • Trognitz BR, Bonierbale M, Landeo JA, Forbes G, Bradshaw JE, Mackay GR, Waugh R, Huarte MA, Colon L (2001) Improving potato resistance to disease under the global initiative on late blight. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CAB International, Wallingford, pp 385–398

    Google Scholar 

  • Tung PX, Zaag PV, Li C, Tang W (2018) Combining ability for foliar resistance to late blight [Phytophthora infestans (Mont.) de Bary] of potato cultivars with different levels of resistance. Am J Potato Res 95(6):670–678

    Google Scholar 

  • Turner SJ (1989) New sources of resistance to potato cyst nematodes in the Commonwealth Potato Collection. Euphytica 42:145–153

    Google Scholar 

  • Valkonen JPT (2015) Elucidation of virus-host interactions to enhance resistance breeding for control of virus diseases in potato. Breed Sci 65:69–76. https://doi.org/10.1270/jsbbs.65.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valluru R, Christ BJ, Haynes KG, Vinyard BT (2006) Inheritance and stability of resistance to fusarium tuber rot in tetraploid potatoes. Am J Potato Res 83(4):335–341

    Google Scholar 

  • Van der Plank JE (1968) Disease resistance in plants. Academic Press, New York, 206p

    Google Scholar 

  • Van der Vossen EAG, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    PubMed  Google Scholar 

  • Van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222

    PubMed  Google Scholar 

  • van Eck HJ, Vos PG, Valkonen JPT, Uitdewilligen JGAML, Lensing H, de Vetten N, Visser RGF (2017) Graphical genoty** as a method to map Ny(o,n)sto and Gpa5 using a reference panel of tetraploid potato cultivars. Theor Appl Genet 130(3):515–528. https://doi.org/10.1007/s00122-016-2831-y

    Article  CAS  PubMed  Google Scholar 

  • Van Soest LJM, Rumpenhorst HJ, Huijsman CA (1983) Resistance to potato cyst-nematodes in tuber-bearing Solanum species and its geographical distribution. Euphytica 32:65–74

    Google Scholar 

  • Verzaux E, Budding D, de Vetten N, Niks RE, Vleeshouwers VGAA, van der Vossen EAG, Jacobsen E, Visser RGF (2011) High resolution map** of a novel late blight resistance gene Rpi-avl1 from the wild Bolivian species Solanum avilesii. Am J Potato Res 88:511–519

    Google Scholar 

  • Villamon FG, Spooner DM, Orrillo M, Mihovilovich E, Perez W, Bonierbale M (2005) Late blight resistance linkages in a novel cross of the wild potato species Solanum paucissectum (series Piurana). Theor Appl Genet 111:1201–1214

    CAS  PubMed  Google Scholar 

  • Vleeshouwers VG, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RG, Jacobsen E, Govers F, Kamoun S, van der Vossen EAG (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3:e2875

    PubMed  PubMed Central  Google Scholar 

  • Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou AA, Kessel GJT, Pel M, Kamoun S (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Plant Physiol Plant Mol Biol 49:507–531

    CAS  Google Scholar 

  • Vossen JH, Nijenhuis M, Arens-de Reuver MJB, van der Vossen EAG, Jacobsen E, Visser RGF (2011) Cloning and exploitation of a functional R gene from Solanum chacoense. US patent WO/2011/034433 A1, published by the world intellectual property organization 18 September 2009

    Google Scholar 

  • Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, MacKerron DKL, Taylor MA, Ross HA (eds) (2007) Potato biology and biotechnology advances and perspectives. Elsevier, Oxford, 823p

    Google Scholar 

  • Wang M, Allefs S, van den Berg RG, Vleeshouwers VG, van der Vossen EAG, Vosman B (2008) Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theor Appl Genet 116:933–943

    CAS  PubMed  Google Scholar 

  • Wastie RL (1991) Breeding for resistance. Adv Plant Path 7:193–224

    Google Scholar 

  • Wastie RL (1994) Inheritance of resistance to fungal diseases of tubers. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 411–427

    Google Scholar 

  • Wastie RL, Bradshaw JE (1993) Inheritance of resistance to Fusarium spp. in tuber progenies of potato. Potato Res 36:189–193

    Google Scholar 

  • Wastie RL, Bradshaw JE (1995) Comparison of resistance to Fusarium spp. of glasshouse- and field-grown tuber progenies of potato. Potato Res 38:345–351

    Google Scholar 

  • Wastie RL, Caligari PDS, Stewart HE, Mackay GR (1987) A glasshouse progeny test for resistance to tuber blight (Phytophthora infestans). Potato Res 30:533–538

    Google Scholar 

  • Wastie RL, Caligari PDS, Stewart HE, Mackay GR (1988) Assessing the resistance to gangrene of progenies of potato (Solanum tuberosum L.) from parents differing in susceptibility. Potato Res 31:355–365

    Google Scholar 

  • Wastie RL, Stewart HE, Brown J (1989) Comparative susceptibility of some potato cultivars to dry rot caused by Fusarium sulphureum and F. solani var. coeruleum. Potato Res 32:49–55

    Google Scholar 

  • Wastie RL, Mackay GR, Caligari PDS, Stewart HE (1990) A glasshouse progeny test for resistance to gangrene (Phoma foveata). Potato Res 33:131–133

    Google Scholar 

  • Wastie RL, Stewart HE, Bradshaw JE, Lees AK (1997) Assessing progenies of potato for resistance to skin spot (Polyscytalum pustulans) in the glasshouse. Potato Res 40:383–389. https://doi.org/10.1007/BF02357997

    Article  Google Scholar 

  • Whisson SC, Avrova AO, Boevink PC, Armstrong MR, Seman ZA, Hein I, Birch PRJ (2011) Exploiting knowledge of pathogen effectors to enhance late blight resistance in potato. Potato Res 54:325–340. https://doi.org/10.1007/s11540-011-9197-y

    Article  Google Scholar 

  • White S, Shaw D (2009) The usefulness of late-blight resistant Sárpo cultivars-a case study. Acta Hortic (834):161–166

    Google Scholar 

  • Wilson CR, Jones RAC (1992) Resistance to phloem transport of potato leafroll virus in potato plants. J Gen Virol 73:3219–3224

    PubMed  Google Scholar 

  • Wolters PJ, de Vos L, Bijsterbosch G, Woudenberg JHC, Visser RGF, van der Linden G, Vleeshouwers VGAA (2019) A rapid method to screen wild Solanum for resistance to early blight. Eur J Plant Pathol 154(1):109–114. https://doi.org/10.1007/s10658-019-01741-y

    Article  CAS  Google Scholar 

  • Xue W, Haynes KG, Qu X (2019) Characterization of early blight resistance in potato cultivars. Plant Dis 103(4):629–637. https://doi.org/10.1094/PDIS-05-18-0794-RE

    Article  CAS  PubMed  Google Scholar 

  • Yencho GC, Kowalski SP, Kennedy GG, Sanford LL (2000) Segregation of leptine glycoalkaloids and resistance to Colorado potato beetle (Leptinotarsa decemlineata (say)) in F2 Solanum tuberosum (4x) × S. chacoense (4x) potato progenies. Am J Potato Res 77:167. https://doi.org/10.1007/BF02853941

    Article  CAS  Google Scholar 

  • Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, Thines M, Weigel D, Burbano HA (2013) The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2013:2. https://doi.org/10.7554/eLife.00731

  • Yuan J, Benoît Bizimungu B, De Koeyer D, Rosyara U, Wen Z, Lagüe M (2020) Genome-wide association study of resistance to potato common scab. Potato Res 63(2):253–266

    CAS  Google Scholar 

  • Zhang X-Y, Yu X-X, Yu Z, Xue Y-F, Qi L-P (2014) A simple method based on laboratory inoculum and field inoculum for evaluating potato resistance to black scurf caused by Rhizoctonia solani. Breed Sci 64(2):156–163. https://doi.org/10.1270/jsbbs.64.156

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Vossen JH, Bergervoet M, Nijenhuis M, Kodde L, Kessel GJT, Vleeshouwers V, Visser RGF, Jacobsen E (2015) An updated conventional- and a novel GM potato late blight R gene differential set for virulence monitoring of Phytophthora infestans. Euphytica 202:219–234

    Google Scholar 

  • Zimnoch-Guzowska E, Lebecka R, Pietrak J (1999) Soft rot and blackleg reactions in diploid potato hybrids inoculated with Erwinia spp. Am J Potato Res 76:199. https://doi.org/10.1007/BF02854222

    Article  Google Scholar 

  • Zimnoch-Guzowska E, Lojkowska E, Perombelon M (2005) Resistance to bacterial pathogens. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops volume I: potato. Science Publishers, Enfield, pp 339–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bradshaw, J.E. (2021). Improving Resistance to Diseases and Pests: A Dynamic Situation. In: Potato Breeding: Theory and Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-64414-7_5

Download citation

Publish with us

Policies and ethics

Navigation