Abstract

In this chapter, all groups have used Residual Network (ResNet) (He et al. 2016) as part of different architectures with the purpose of solving the GIANA challenge. In some cases like RTC-ATC group ResNet-50 was used as a layer in Faster Convolutional Neural Network (FCNN) in order to build an automated recognition system to detect the presence of polyps in colonoscopy images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anas, E. M. A., Nouranian, S., Mahdavi, S. S., Spadinger, I., Morris, W. J., Salcudean, S. E., Mousavi, P., & Abolmaesumi, P. (2017). Clinical target-volume delineation in prostate brachytherapy using residual neural networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 365–373). Springer.

    Google Scholar 

  • Chaurasia, A., & Culurciello, E. (2017). Linknet: Exploiting encoder representations for efficient semantic segmentation. In 2017 IEEE Visual Communications and Image Processing (VCIP) (pp. 1–4). IEEE.

    Google Scholar 

  • Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2009). Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–1645.

    Article  Google Scholar 

  • Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the 33rd International Conference on Machine Learning (ICML-16).

    Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1026–1034).

    Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).

    Google Scholar 

  • Hoang Ngan Le, T., Zheng, Y., Zhu, C., Luu, K., & Savvides, M. (2016). Multiple scale faster-rcnn approach to driver’s cell-phone usage and hands on steering wheel detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 46–53).

    Google Scholar 

  • Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02), 107–116.

    Article  Google Scholar 

  • Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7132–7141).

    Google Scholar 

  • Iglovikov, V., Rakhlin, A., Kalinin, A., & Shvets, A. (2017). Pediatric bone age assessment using deep convolutional neural networks. ar**v preprint ar**v:1712.05053.

    Google Scholar 

  • Jiang, H., & Learned-Miller, E. (2017). Face detection with the faster r-cnn. In 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017) (pp. 650–657). IEEE.

    Google Scholar 

  • Lin, T., Dollár, P., Girshick, R. B., He, K., Hariharan, B., & Belongie, S. J. (2016). Feature pyramid networks for object detection. CoRR, ar**v:abs/1612.03144.

    Google Scholar 

  • Liu, Y., Minh Nguyen, D., Deligiannis, N., Ding, W., & Munteanu, A. (2017). Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery. Remote Sensing (vol. 9(6), p. 522).

    Google Scholar 

  • Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 Fourth International Conference on 3D Vision (3DV) (pp. 565–571). IEEE.

    Google Scholar 

  • Mishkin, D., Sergievskiy, N., & Matas, J. (2017). Systematic evaluation of convolution neural network advances on the imagenet. Computer Vision and Image Understanding.

    Google Scholar 

  • Rakhlin, A., Davydow, A., & Nikolenko, S. (2018, June). Land cover classification from satellite imagery with u-net and lovász-softmax loss. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

    Google Scholar 

  • Rakhlin, A., Tiulpin, A., Shvets, A. A., Kalinin, A. A., Iglovikov, V. I., & Nikolenko, S. (2019). Breast tumor cellularity assessment using deep neural networks. In The IEEE International Conference on Computer Vision (ICCV) Workshops, Oct 2019.

    Google Scholar 

  • Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91–99).

    Google Scholar 

  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 234–241). Springer.

    Google Scholar 

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958.

    MathSciNet  MATH  Google Scholar 

  • Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object localization using convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 648–656).

    Google Scholar 

  • “What My Deep Model Doesn’t Know....” http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html.

  • **e, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1492–1500).

    Google Scholar 

  • Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization. ar**v preprint ar**v:1710.09412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Amaya-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amaya-Rodriguez, I. et al. (2021). ResNet. In: Bernal, J., Histace, A. (eds) Computer-Aided Analysis of Gastrointestinal Videos. Springer, Cham. https://doi.org/10.1007/978-3-030-64340-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64340-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64339-3

  • Online ISBN: 978-3-030-64340-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation