Positron Emission Tomography (PET) Imaging Based on Sub-millimeter Pixelated CdZnTe Detectors

  • Chapter
  • First Online:
Advanced X-ray Detector Technologies

Abstract

This chapter examines positron emission tomography (PET) imaging applications using sub-millimeter pixelated cadmium zinc telluride (CdZnTe) detectors. We first discuss the current state of the field and then present recent finds from our own studies. CdZnTe detectors with 0.35 mm and 0.6 mm pitch pixels were fabricated with pixel anodes and coplanar cathode. The characterizations of CdZnTe detectors for PET imaging are analyzed in detail, including 3D spatial resolution, the depth of interaction, charge sharing, timing resolution, and imaging resolution. For positron-annihilated 511 keV gamma ray photons, the single-pixel event profile of the 0.35 mm pitch pixelated CdZnTe detector exhibited a spatial resolution of 0.41 mm FWHM; and the double-pixel charge-sharing event profile had a spatial resolution of 0.52 mm FWHM. Imaging experiments have demonstrated that a PET scanner made of 0.35 mm pitch pixelated CdZnTe detectors can improve the image resolution of PET scanner to 0.5 mm. To narrow the coincidence timing window of CdZnTe PET scanner, a time correction method to the long charge drift time of CdZnTe detector was introduced. To include the coincidence events of the double-pixel charge-sharing events from CdZnTe, an interpolation algorithm for the location of charge-sharing events was developed. Researches indicate that the CdZnTe detector is a promising candidate for sub-millimeter high-resolution PET imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Phelps, M. E., Hoffman, E. J., et al. (1976). Tomographic images of blood pool and perfusion in brain and heart. Journal of Nuclear Medicine, 17, 603–612.

    Google Scholar 

  2. Ter-Pogossian, M. M., Phelps, M. E., et al. (1975). A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology, 114(1), 89–98.

    Article  Google Scholar 

  3. Weissleder, R., Ross, B. D., Rehemtulla, A., & Gambhir, S. S. (2010). Molecular imaging – Principles and practice. Shelton: People’s Medical Publishing House.

    Google Scholar 

  4. Muehllehner, G., & Karp, J. S. (2006). Positron emission tomography. Physics in Medicine and Biology, 51, R117–R137.

    Article  Google Scholar 

  5. Cherry, S. R. (1997). MicroPET: A high resolution PET scanner for imaging small animals. IEEE Transactions on Nuclear Science, 44, 1161–1166.

    Article  Google Scholar 

  6. Cherry, S. R. (2004). In vivo molecular and genomic imaging: New challenged for imaging physics. Physics in Medicine and Biology, 49, 13–48.

    Article  Google Scholar 

  7. Beyer, T., Townsend, D. W., et al. (2000). A combined PET/CT scanner for clinical oncology. Journal of Nuclear Medicine, 41, 1369–1379.

    Google Scholar 

  8. Shao, Y., et al. (1997). Simultaneous PET and MR imaging. Physics in Medicine and Biology, 42, 1965–1970.

    Article  Google Scholar 

  9. Moses, W. W., & Derenzo, S. E. (1993). Empirical observation of resolution degradation in positron emission tomographs utilizing block detectors [abstract]. Journal of Nuclear Medicine, 34(suppl), 101P.

    Google Scholar 

  10. Levin, C. S., & Hoffman, E. J. (1999). Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Physics in Medicine and Biology, 44(3), 781–799.

    Article  Google Scholar 

  11. Wernick, M. N., & Aarsvold, J. N. (2004). Emission tomography the fundamentals of PET and SPECT. Burlington: Elsevier Academic Press.

    Google Scholar 

  12. Bailey, D. L., Townsend, D. W., Valk, P. E., & Maisey, M. N. (2005). Positron emission tomography basic sciences. London: Springer.

    Book  Google Scholar 

  13. Knoll, G. F. (2000). Radiation detection and measurement (3rd ed.). New York: John Wiley & Sons.

    Google Scholar 

  14. Watson, C. C. (2000). New, faster, image-based scatter correction for 3D PET. IEEE Transactions on Nuclear Science, 47(4), 1587–1594.

    Article  Google Scholar 

  15. Markiewicz, P. J., Tamal, M., et al. (2007). High accuracy multiple scatter modelling for 3D whole body PET. Physics in Medicine and Biology, 52, 829–847.

    Article  Google Scholar 

  16. Lewellen, T. K. (1998). Time-of-flight PET. Seminars in Nuclear Medicine, 28, 268–275.

    Article  Google Scholar 

  17. Gu, Y., Matteson, J. L., et al. (2011). Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET. Physics in Medicine and Biology, 56, 1563–1584.

    Article  Google Scholar 

  18. Zhang, F., He, Z., et al. (2005). Feasibility study of using two 3-D position sensitive CZT detectors for small animal PET. IEEE Nuclear Science Symposium Conference Record, 1582–1585.

    Google Scholar 

  19. Kastis, G. A., Wu, M. C., et al. (2002). Tomographic small-animal imaging using a high resolution semiconductor camera. IEEE Transactions on Nuclear Science, 49(1), 172–175.

    Article  Google Scholar 

  20. Wagenaar DJ (2004) Chapter 15, CdTe and CdZnTe Semiconductor Detectors for Nuclear Medicine Imaging, EMISSION TOMOGRAPHY The Fundamentals of PET and SPECT, Miles N. Wernick, John N. Aarsvold, Elsevier Inc.

    Google Scholar 

  21. Jo, W. J., Jeong, M., et al. (2016). Preliminary research of CZT based PET system development in KAERI. Journal of Radiation Protection and Research, 41(2), 81–86.

    Article  Google Scholar 

  22. Kim, K. H., Hwang, S., et al. (2016). The effect of low-temperature annealing on a CdZnTe detector. IEEE Transactions on Nuclear Science, 63(4), 2278–2282.

    Article  Google Scholar 

  23. Bolotnikov, A. E., Ackley, K., et al. (2015). High-efficiency CdZnTe gamma-ray detectors. IEEE Transactions on Nuclear Science, 62(6), 3193–3198.

    Article  Google Scholar 

  24. He, Z., Knoll, G. F., et al. (1997). Position-sensitive single carrier CdZnTe detectors. Nuclear Instruments and Methods A, 388, 180–185.

    Article  Google Scholar 

  25. Yin, Y., Chen, X., et al. (2014). Evaluation of PET imaging resolution using 350 μm pixelated CZT as VP-PET insert detector. IEEE Transactions on Nuclear Science, 61(1), 154–161.

    Article  MathSciNet  Google Scholar 

  26. Yin, Y., Chen, X., et al. (2013). 3D spatial resolution of 350um pitch pixelated CdZnTe detectors for imaging applications. IEEE Transactions on Nuclear Science, 60(1), 9–15.

    Article  Google Scholar 

  27. Cai, L., Lai, X., et al. (2014). MRC-SPECT: A sub-500 μm resolution MR-compatible SPECT system for simultaneous dual-modality study of small animals. Nuclear Instruments and Methods A, 734, 147–151.

    Article  Google Scholar 

  28. Yang, S., Li, M., et al. (2020). Effect of CZT system characteristics on Compton scatter event recovery. IEEE Transactions on Radiation and Plasma Medical Sciences, 4(1), 91–97.

    Article  Google Scholar 

  29. Vernekohl, D., Abbaszadeh, S., et al. (2019). Robust detector calibration for a novel PET system based on cross-strip CZT detectors. IEEE Transactions on Radiation and Plasma Medical Sciences, 3(6), 626–633.

    Article  Google Scholar 

  30. Espagneta, R., Frezzaa, A., et al. (2017). Conception and characterization of a virtual coplanar grid for a 11×11 pixelated CZT detector. Nuclear Instruments and Methods A, 860, 62–69.

    Article  Google Scholar 

  31. Abbaszadeh, S., & Levin, C. S. (2017). Direct conversion semiconductor detectors for radiation imaging. In Semiconductor radiation detectors: Technology and applications (pp. 1–20). Boca Raton: CRC Press.

    Google Scholar 

  32. Spieler, H. (2005). Semiconductor detector systems. Oxford: Oxford Science Publications.

    Book  Google Scholar 

  33. Prokesch, M., Soldner, S. A., et al. (2016). CdZnTe detectors operating at X-ray fluxes of 100 million photons/(mm2.sec). IEEE Transactions on Nuclear Science, 63(3), 1854–1859.

    Article  Google Scholar 

  34. Schlesinger, T. E., Toney, J. E., et al. (2001). Cadmium zinc telluride and its use as a nuclear radiation detector material. Materials Science and Engineering, 32, 103–189.

    Article  Google Scholar 

  35. Yoon, H., Goorsky, M. S., et al. (1999). Resistivity variation of semi-insulating Cd1-xZnxTe in relationship to alloy composition. Journal of Electronic Materials, 28(6), 838–842.

    Article  Google Scholar 

  36. Eisen, Y., & Shor, A. (1998). CdTe and CdZnTe materials for room temperature X-ray and gamma-ray detectors. Journal of Crystal Growth, 184–185, 1302–1312.

    Article  Google Scholar 

  37. Toney, J. E., Schlesinger, T. E., et al. (1998). Elementary analysis of line shapes and energy resolution in semiconductor radiation detectors. Materials Research Society Symposium Proceedings, 487, 193–198.

    Article  Google Scholar 

  38. Barrett, H. H., Eskin, J. D., & Barber, H. B. (1995). Charge transport in arrays of semiconductor gamma-ray detectors. Physical Review Letters, 75(1), 156.

    Article  Google Scholar 

  39. Luke, P. N. (1995). Unipolar charge sensing with coplanar electrodes application to semiconductor detectors. IEEE Transactions on Nuclear Science, 42(4), 207–213.

    Article  Google Scholar 

  40. Luke, P. N. (1994). Single-polarity charge sensing in ionization detectors using coplanar electrodes. Applied Physics L, 65(22), 2884–2886.

    Article  Google Scholar 

  41. He, Z., Knoll, G. F., & Wehe, D. K. (1998). Direct measurement of product of the electron mobility and mean free drift time of CdZnTe semiconductors using position sensitive single polarity charge sensing detectors. Journal of Applied Physics, 84(10), 5566.

    Article  Google Scholar 

  42. Sellin, P. J., Prekas, G., et al. (2010). Performance of CZT wafers grown by vapour phase transport. IEEE Nuclear Science Symposium Conference Record, R01-6.

    Google Scholar 

  43. Zappettini, A., Marchini, L., et al. (2011). Growth and characterization of CZT crystals by the vertical Bridgman method for X-ray detector applications. IEEE Transactions on Nuclear Science, 58(5), 2352–2356.

    Article  Google Scholar 

  44. Llopart, X., Campbell, M., et al. (2002). Medipix2, a 64 k pixel readout chip with 55 micron square elements working in single photon counting mode. IEEE Transactions on Nuclear Science, 49(5), 2279–2283.

    Article  Google Scholar 

  45. Groll, A., & Levin, C. S. (2018). Calibrations of the integrated circuit readout for a high resolution preclinical CZT PET imaging system. IEEE Nuclear Science Symposium Conference Record. https://doi.org/10.1109/NSSMIC.2018.8824635.

  46. Gao, W., & Liu, H. (2014). Design of a multichannel low-noise front-end readout ASIC dedicated to CZT detectors for PET imaging. IEEE Transactions on Nuclear Science, 61, 2532–2539.

    Article  Google Scholar 

  47. Cenkeramaddi, L. R., Genov, G., et al. (2012). Low-energy CZT detector array for the ASIM mission. IEEE Instrumentation and Measurement Technology Conference. https://doi.org/10.1109/I2MTC.2012.6229184.

  48. Garson, A., Li, Q., et al. (2007). Leakage currents and capacitances of thick CZT detectors. IEEE Nuclear Science Symposium Conference Record, 2258–2261.

    Google Scholar 

  49. Ojha, N., Griesmer, J., et al. (2010). PET performance of the Gemini TF PET-MR: The world’s first whole body PET-MRI scanner. IEEE Nuclear Science Symposium Conference Record, M03–2.

    Google Scholar 

  50. Iniewski, K., Chen, H., et al. (2007). Modeling charge-sharing effects in Pixellated CZT detectors. IEEE Nuclear Science Symposium Conference Record, 2007, 4608–4611.

    Google Scholar 

  51. Yin, Y., Komarov, S., et al. (2009). Characterization of highly pixelated CdZnTe detectors for sub-millimeter PET imaging. IEEE Nuclear Science Symposium Conference Record, 2411–2414.

    Google Scholar 

  52. Matteson, J. L., Gu, Y., et al. (2008). Charge collection studies of a high resolution CZT-based detector for PET. IEEE Nuclear Science Symposium Conference Record, 503–510.

    Google Scholar 

  53. Chen, C. M. H., Boggs, S. E., et al. (2002). Numerical modeling of charge sharing in CdZnTe pixel detectors. IEEE Transactions on Nuclear Science, 49(1), 270–276.

    Article  Google Scholar 

  54. Kim, J. C., Anderson, S. E., et al. (2011). Charge sharing in common-grid pixelated CdZnTe detectors. Nuclear Instruments and Methods A, 654, 233–243.

    Article  Google Scholar 

  55. Lee, K., Matteson, J., et al. (2010). Precision measurements of the response of a pixelated CZT detector with an Al2O3 insulated steering grid. IEEE Nuclear Science Symposium Conference Record, R05-40.

    Google Scholar 

  56. Shockley, W. (1938). Currents to conductors induced by a moving point charge. Journal of Applied Physics, 9, 635–636.

    Article  Google Scholar 

  57. Ramo S (1939) Currents induced by electron motion, proceedings of the I.R.E., p 584.

    Google Scholar 

  58. Li, Q., Beilicke, M., et al. (2011). Study of thick CZT detectors for X-ray and Gamma-ray astronomy. Astroparticle Physics, 34, 769–777.

    Article  Google Scholar 

  59. Jung, I., Krawczynski, H., et al. (2007). Detailed studies of pixelated CZT detectors grown with the modified horizontal Bridgman method. Astroparticle Physics, 28(4–5), 397–408.

    Article  Google Scholar 

  60. Jung I, Garson A et al (2006) Test of thick pixelated Orbotech detectors with and without steering grids, ar**v:Astro-ph/0608673v1.

    Google Scholar 

  61. Yin, Y., Liu, Q., et al. (2014). Charge sharing effect on 600 um pitch pixelated CZT detector for imaging applications. Chinese Physics C, 38(11), 116002.

    Article  Google Scholar 

  62. Carrascal, J., Castilla, J., et al. (2014). Energy and DOI calibrations for high spatial resolution CZT detectors. IEEE Transactions on Nuclear Science, 61(1), 518–527.

    Article  Google Scholar 

  63. Okada, Y., Takahashi, T., et al. (2001). CdTe and CdZnTe detectors for timing measurement. IEEE Transactions on Nuclear Science, 49(4), 1986–1992.

    Article  Google Scholar 

  64. Tai, Y. C., Wu, H., et al. (2008). Virtual-Pinhole PET. Journal of Nuclear Medicine, 49(3), 471–479.

    Article  Google Scholar 

  65. Wu, H., Pal, D., et al. (2008). A feasibility study of a prototype PET insert device to convert a general purpose animal PET scanner to higher resolution. Journal of Nuclear Medicine, 49(1), 79–87.

    Article  Google Scholar 

  66. Constantinescu, C. C., & Mukherjee, J. (2009). Performance evaluation of an Inveon PET preclinical scanner. Physics in Medicine and Biology, 54, 2885–2899.

    Article  Google Scholar 

  67. Visser, E. P., Disselhorst, J. A., et al. (2009). Spatial resolution and sensitivity of the Inveon small-animal PET scanner. Journal of Nuclear Medicine, 50(1), 139–147.

    Article  Google Scholar 

  68. Rossi, L., Fischer, P., Rohe, T., & Wermes, N. (2006). Pixel detectors from fundamentals to applications. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  69. He, Z. (2001). Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nuclear Instruments and Methods A, 463, 250–267.

    Article  Google Scholar 

  70. Pal, D., O’Sullivan, J. A., et al. (2007). 2D linear and iterative reconstruction algorithms for a PET-insert scanner. Physics in Medicine and Biology, 52, 4293–4310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, Y., Komarov, S. (2022). Positron Emission Tomography (PET) Imaging Based on Sub-millimeter Pixelated CdZnTe Detectors. In: Iniewski, K.(. (eds) Advanced X-ray Detector Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-64279-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64279-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64278-5

  • Online ISBN: 978-3-030-64279-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation