• 1882 Accesses

Abstract

This chapter is devoted to network design problems involving conflicting agents, referred to as the designer and the users, respectively. Such problems are best cast into the framework of bilevel programming, where the designer anticipates the reaction of rational users to its course of action, which fits many situations of interest. In this book chapter, we consider four applications of very different nature, with a special focus on algorithmic issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdulaal, M., & LeBlanc, J. L. (1979). Continuous equilibrium network design models. Transportation Research Part B: Methodological, 13(1), 19–32.

    Article  Google Scholar 

  • Abouee-Mehrizi, H., Babri, S., Berman, O., & Shavandi, H. (2011). Optimizing capacity, pricing and location decisions on a congested network with balking. Mathematical Methods of Operations Research, 74(2), 233–255.

    Article  Google Scholar 

  • Ball, M. O., Golden, B. L., & Vohra, R. V. (1989). Finding the most vital arcs in a network. Operations Research Letters, 8(2), 73–76.

    Article  Google Scholar 

  • Bengio, Y., Lodi, A., & Prouvost, A. (2018). Machine learning for Combinatorial Optimization: A Methodological Tour d’Horizon. ar**v:1811.06128.

    Google Scholar 

  • Bouhtou, M., van Hoesel, S., van der Kraaij, A. F., & Lutton, J. L. (2007). Tariff optimization in networks. INFORMS Journal on Computing, 19(3), 458–469.

    Article  Google Scholar 

  • Brotcorne, L., Labbé, M., Marcotte, P., & Savard, G. (2000). A bilevel model and solution algorithm for a freight tariff-setting problem. Transportation Science, 34(3), 289–302.

    Article  Google Scholar 

  • Brotcorne, L., Labbé, M., Marcotte, P., & Savard, G. (2001). A bilevel model for toll optimization on a multicommodity transportation network. Transportation Science, 35(4), 345–358.

    Article  Google Scholar 

  • Brotcorne, L., Labbé, M., Marcotte, P., & Savard, G. (2008). Joint design and pricing on a network. Operations Research, 56(5), 1104–1115.

    Article  Google Scholar 

  • Colson, B., Marcotte, P., & Savard, G. (2005). A trust-region method for nonlinear bilevel programming: Algorithm and computational experience. Computational Optimization and Applications, 30(3), 211–227.

    Article  Google Scholar 

  • Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations Research, 153(1), 235–256.

    Article  Google Scholar 

  • Dan, T., & Marcotte, P. (2019). Competitive facility location with selfish users and queues. Operations Research, 67(2), 479–497.

    Google Scholar 

  • Dempe, S. (2002). Foundations of bilevel programming. Berlin: Springer.

    Google Scholar 

  • Dempe, S. (2003). Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization, 52(3), 333–359.

    Article  Google Scholar 

  • Dewez, S., Labbé, M., Marcotte, P., & Savard, G. (2008). New formulations and valid inequalities for a bilevel pricing problem. Operations Research Letters, 36(2), 141–149.

    Article  Google Scholar 

  • Dobson, G., & Kalish, S. (1988). Positioning and pricing a product line. Marketing Science, 7(2), 107–125.

    Article  Google Scholar 

  • Gairing, M., Harks, T., & Klimm, M. (2017). Complexity and approximation of the continuous network design problem. SIAM Journal on Optimization, 27(3), 1554–1582.

    Article  Google Scholar 

  • Gilbert, F., Marcotte, P., & Savard, G. (2015). A numerical study of the logit network pricing problem. Transportation Science, 49(3), 706–719.

    Article  Google Scholar 

  • Hassin, R. (2016). Rational queueing. New York: CRC Press.

    Book  Google Scholar 

  • Heilporn, G., Labbé, M., Marcotte, P., & Savard, G. (2010a). A parallel between two classes of pricing problems in transportation and marketing. Journal of Revenue and Pricing Management, 9(1–2), 110–125.

    Article  Google Scholar 

  • Heilporn, G., Labbé, M., Marcotte, P., & Savard, G. (2010b). A polyhedral study of the network pricing problem with connected toll arcs. Networks, 55(3), 234–246.

    Article  Google Scholar 

  • Heilporn, G., Labbé, M., Marcotte, P., & Savard, G. (2011). Valid inequalities and branch-and-cut for the clique pricing problem. Discrete Optimization, 8(3), 393–410.

    Article  Google Scholar 

  • Israeli, E., & Wood, R. K. (2002). Shortest-path network interdiction. Networks, 40(2), 97–111.

    Article  Google Scholar 

  • Joret, G. (2011). Stackelberg network pricing is hard to approximate. Networks, 57(2), 117–120.

    Google Scholar 

  • Kara, Y. B., & Verter, V. (2004). Designing a road network for hazardous materials transportation. Transportation Science, 38(2), 188–196.

    Article  Google Scholar 

  • Kuiteing, A. K., Marcotte, P., & Savard, G. (2016). Network pricing of congestion-free networks: The elastic and linear demand case. Transportation Science, 51(3), 791–806.

    Article  Google Scholar 

  • Labbé, M., Marcotte, P., & Savard, G. (1998). A bilevel model of taxation and its application to optimal highway pricing. Management Science, 44(12-Part-1), 1608–1622.

    Google Scholar 

  • LeBlanc, J. L., & Boyce, E. D. (1986). A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows. Transportation Research Part B: Methodological, 20(3), 259–265.

    Article  Google Scholar 

  • Luo, Z. Q., Pang, J. S., & Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge: Cambridge University.

    Book  Google Scholar 

  • Marcotte, P. (1986). Network design problem with congestion effects: A case of bilevel programming. Mathematical Programming, 34(2), 142–162.

    Article  Google Scholar 

  • Marcotte, P., & Marquis, G. (1992). Efficient implementation of heuristics for the continuous network design problem. Annals of Operations Research, 34(1), 163–176.

    Article  Google Scholar 

  • Marcotte, P., Mercier, A., Savard, G., & Verter, V. (2009). Toll policies for mitigating hazardous materials transport risk. Transportation Science, 43(2), 228–243.

    Article  Google Scholar 

  • Marcotte, P., Savard, G., & Schoeb, A. (2013). A hybrid approach to the solution of a pricing model with continuous demand segmentation. EURO Journal on Computational Optimization, 1(1–2), 117–142.

    Article  Google Scholar 

  • Marianov, V., Ríos, M., & Icaza, M. J. (2008). Facility location for market capture when users rank facilities by shorter travel and waiting times. European Journal of Operational Research, 191(1), 32–44.

    Article  Google Scholar 

  • Roch, S., Savard, G., & Marcotte, P. (2005). An approximation algorithm for Stackelberg network pricing. Networks, 46(1), 57–67.

    Article  Google Scholar 

  • Talbi, E. G. E. (2013). Metaheuristics for Bi-level optimization. Berlin: Springer.

    Book  Google Scholar 

  • Van Hoesel, S. (2008). An overview of Stackelberg pricing in networks. European Journal of Operational Research, 189(3), 1393–1402.

    Article  Google Scholar 

  • Washburn, A., & Wood, K. (1995). Two-person zero-sum games for network interdiction. Operations Research, 43(2), 243–251.

    Article  Google Scholar 

  • Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer Modelling, 17(2), 1–18.

    Article  Google Scholar 

  • Wood, R. K. (2011). Bilevel network interdiction models: Formulations and solutions. In Wiley Encyclopedia of operations research and management science.

    Google Scholar 

  • Zhang, Y., Berman, O., Marcotte, P., & Verter, V. (2010). A bilevel model for preventive healthcare facility network design with congestion. IIE Transactions, 42(12), 865–880.

    Article  Google Scholar 

Download references

Acknowledgements

The research of M. Labbé was partially supported by Fonds de la Recherche Scientifique—FNRS (grant PDR T0098.18). The research of P. Marcotte was partially supported by the National Sciences and Engineering Research Council of Canada RGPIN grant 05073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Marcotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Labbé, M., Marcotte, P. (2021). Bilevel Network Design. In: Crainic, T.G., Gendreau, M., Gendron, B. (eds) Network Design with Applications to Transportation and Logistics. Springer, Cham. https://doi.org/10.1007/978-3-030-64018-7_9

Download citation

Publish with us

Policies and ethics

Navigation