Miniaturization in Separation Techniques

  • Living reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Minute bioanalytical samples often require special ways of their processing. Here, miniaturized separation techniques play an important role due to their numerous advantages like high separation efficiency, high sensitivity, and possibility of using not typical stationary and mobile phases. In this chapter, the basic information on capillary liquid chromatography and related techniques are presented. The system construction as well as methods of preparation of capillary columns is described. Capillary column packing and synthesis of monolithic stationary phases are also discussed. Examples of using capillary columns in sample preparation are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Giddings, J. C. (1965). Dynamics of chromatography; Part I: Principles and theory. Marcel Dekker, Inc.

    Google Scholar 

  2. Giddings, J. C. (1964). Comparison of the theoretical limit of separating ability in gas and liquid chromatography. Analytical Chemistry, 36, 1890–1892.

    Article  CAS  Google Scholar 

  3. Horvath, C. G., Preiss, B. A., & Lipsky, S. R. (1967). Fast liquid chromatography. Investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers. Analytical Chemistry, 39, 1422–1428.

    Article  CAS  PubMed  Google Scholar 

  4. Horvath, C. G., & Lipsky, S. R. (1969). Rapid analysis of ribonucleosides and bases at the picomole level using pellicular cation exchange resin in narrow bore columns. Analytical Chemistry, 41, 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  5. Ishii, D., Asai, K., Hibi, K., Jonokuchi, T., & Nagaya, M. (1977). A study of micro-high-performance liquid chromatography: I. Development of technique for miniaturization of high-performance liquid chromatography. Journal of Chromatography A, 144, 157–168.

    Article  CAS  Google Scholar 

  6. Takeuchi, T., & Ishii, D. (1980). Ultra-micro high-performance liquid chromatography. Journal of Chromatography. A, 190, 150–155.

    Article  CAS  Google Scholar 

  7. Scott, R. P. W., & Kucera, P. (1979). Mode of operation and performance characteristics of microbore columns for use in liquid chromatography. Journal of Chromatography. A, 169, 51–72.

    Article  CAS  Google Scholar 

  8. Tsuda, T., & Novotny, M. (1978). Packed microcapillary columns in high performance liquid chromatography. Analytical Chemistry, 50, 271–275.

    Article  CAS  Google Scholar 

  9. Tsuda, T., & Novotny, M. (1978). Band-broadening phenomena in microcapillary tubes under the conditions of liquid chromatography. Analytical Chemistry, 50, 632–634.

    Article  CAS  Google Scholar 

  10. Chervet, J. P., Ursem, M., & Salzmann, J. P. (1996). Instrumental requirements for nanoscale liquid chromatography. Analytical Chemistry, 68, 1507–1512.

    Article  CAS  PubMed  Google Scholar 

  11. Szumski, M., & Buszewski, B. (2002). State of the art in miniaturized separation techniques. Critical Reviews in Analytical Chemistry, 32, 1–46.

    Article  CAS  Google Scholar 

  12. Bhushan, R., & Dubey, R. (2014). Integrated lab-on-chip and mass spectrometry: Recent advances in bioanalysis. Bioanalysis, 6, 1875–1877.

    Article  CAS  PubMed  Google Scholar 

  13. Conde, J. P., Madaboosi, N., Soares Ruben, R. G., Fernandes, J. T. S., Novo, P., Moulas, G., & Chu, V. (2016). Lab-on-chip systems for integrated bioanalyses. Essays in Biochemistry, 60, 121–131.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mirasoli, M., Guardigli, M., Michelini, E., & Roda, A. (2014). Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. Journal of Pharmaceutical and Biomedical Analysis, 87, 36–52.

    Article  CAS  PubMed  Google Scholar 

  15. Oedit, A., Vulto, P., Ramautar, R., Lindenburg, P. W., & Hankemeier, T. (2015). Lab-on-a-Chip hyphenation with mass spectrometry: Strategies for bioanalytical applications. Current Opinion in Biotechnology, 31, 79–85.

    Article  CAS  PubMed  Google Scholar 

  16. Ishii, D. (1988). Introduction to microscale high-performance liquid chromatography. VCH Publishers.

    Google Scholar 

  17. Gama, M. R., Collins, C. H., & Bottoli, C. B. G. (2013). Nano-liquid chromatography in pharmaceutical and biomedical research. Journal of Chromatographic Science, 51, 694–703.

    Article  CAS  PubMed  Google Scholar 

  18. Needham, S. R., & Valaskovic, G. A. (2015). Microspray and microflow LC–MS/MS: The perfect fit for bioanalysis. Bioanalysis, 7, 1061–1064.

    Article  CAS  PubMed  Google Scholar 

  19. Wilson, S. R., Vehus, T., Berg, H. S., & Lundanes, E. (2015). Nano-LC in proteomics: Recent advances and approaches. Bioanalysis, 7, 1799–1815.

    Article  CAS  PubMed  Google Scholar 

  20. Fröhlich, T., & Arnold, G. J. (2009). A newcomer’s guide to nano-liquid-chromatography of peptides. In J. Reinders & A. Sickmann (Eds.), Proteomics: Methods and protocols (pp. 123–141). Humana Press.

    Chapter  Google Scholar 

  21. Rogeberg, M., Malerod, H., Roberg-Larsen, H., Aass, C., & Wilson, S. R. (2014). On-line solid phase extraction–liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. Journal of Pharmaceutical and Biomedical Analysis, 87, 120–129.

    Article  CAS  PubMed  Google Scholar 

  22. Rieux, L., Sneekes, E.-J., Swart, R., & Swartz, M. (2011). Nano LC: Principles, evolution, and state-of-the-art of the technique. LC-GC North America, 29, 926–934.

    CAS  Google Scholar 

  23. Szumski, M., Grzywinski, D., Prus, W., & Buszewski, B. (2014). Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. Journal of Chromatography. A, 1364, 163–170.

    Article  CAS  PubMed  Google Scholar 

  24. Wahab, M. F., Patel, D. C., Wimalasinghe, R. M., & Armstrong, D. W. (2017). Fundamental and practical insights on the packing of modern high-efficiency analytical and capillary columns. Analytical Chemistry, 89, 8177–8191.

    Article  CAS  PubMed  Google Scholar 

  25. Buszewski, B., Berek, D., & Garaj, J. (1986). Charakterystyka i ocena jakości kolumn stosowanych w wysokosprawnej chromatografii cieczowej (HPLC). Wiadomości chemiczne, 10, 369–396.

    Google Scholar 

  26. Buszewski, B., Berek, D., Novak, I., & Garaj, J. (1987). Optimalizacia podmienok plenia vysokoucinnych kolon pre kvapalinovu chromatografiu. Chemicke Listy, 81, 552–560.

    CAS  Google Scholar 

  27. https://www.yumpu.com/en/document/read/14026982/nanobaume-brochure-western-fluids-engineering. Accessed 12 Nov 2020.

  28. Cortes, H. J., Pfeiffer, C. D., Richter, B. E., & Stevens, T. S. (1987). Porous ceramic bed supports for fused silica packed capillary columns used in liquid chromatography. Journal of High Resolution Chromatography, 10, 446–448.

    Article  CAS  Google Scholar 

  29. Chen, J.-R., Dulay, M. T., Zare, R. N., Svec, F., & Peters, E. (2000). Macroporous photopolymer frits for capillary electrochromatography. Analytical Chemistry, 72, 1224–1227.

    Article  CAS  PubMed  Google Scholar 

  30. Kato, M., Dulay, M. T., Bennett, B. D., Quirino, J. P., & Zare, R. N. (2001). Photopolymerized sol–gel frits for packed columns in capillary electrochromatography. Journal of Chromatography. A, 924, 187–195.

    Article  CAS  PubMed  Google Scholar 

  31. Hsieh, E. J., Bereman, M. S., Durand, S., Valaskovic, G. A., & MacCoss, M. J. (2013). Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomic samples. Journal of the American Society for Mass Spectrometry, 24, 148–153.

    Article  CAS  PubMed  Google Scholar 

  32. New Objective. https://www.newobjective.com/solutions/picofrit/. Accessed 8 December 2021.

  33. Leonardis, I., Capriotti, F., Cappiello, A., Famiglini, G., & Palma, P. (2012). Temperature effects on nano-LC column packing technology. Journal of Separation Science, 35, 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  34. Malik, A., Li, W., & Lee, M. L. (1993). Preparation of long packed capillary columns using carbon dioxide slurries. Journal of Microcolumn Separations, 5, 361–369.

    Article  CAS  Google Scholar 

  35. Tong, D., Bartle, K. D., & Clifford, A. A. (1994). Preparation and evaluation of supercritical carbon dioxide-packed capillary columns for HPLC and SFC. Journal of Microcolumn Separations, 6, 249–255.

    Article  CAS  Google Scholar 

  36. Rodrigues, J. C., & Lanças, F. M. (2005). Preparation of packed capillary columns using supercritical carbon dioxide on cyclone-type slurry reservoir. Journal of Chromatography. A, 1090, 172–177.

    Article  CAS  PubMed  Google Scholar 

  37. Yan, C. (1995). Electrokinetic packing of capillary columns. US5453163A, USA.

    Google Scholar 

  38. Dadoo, R., Zare, R. N., Yan, C., & Anex, D. S. (1998). Advances in capillary electrochromatography: Rapid and high-efficiency separations of PAHs. Analytical Chemistry, 70, 4787–4792.

    Article  CAS  Google Scholar 

  39. Hong, T., Yang, X., Xu, Y., & Ji, Y. (2016). Recent advances in the preparation and application of monolithic capillary columns in separation science. Analytica Chimica Acta, 931, 1–24.

    Article  CAS  PubMed  Google Scholar 

  40. Masini, J. C., & Svec, F. (2017). Porous monoliths for on-line sample preparation: A review. Analytica Chimica Acta, 964, 24–44.

    Article  CAS  PubMed  Google Scholar 

  41. Svec, F., & Lv, Y. (2015). Advances and recent trends in the field of monolithic columns for chromatography. Analytical Chemistry, 87, 250–273.

    Article  CAS  PubMed  Google Scholar 

  42. Wu, R. A., Hu, L., Wang, F., Ye, M., & Zou, H. (2008). Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. Journal of Chromatography. A, 1184, 369–392.

    Article  CAS  PubMed  Google Scholar 

  43. Hjertén, S., Liao, J.-L., & Zhang, R. (1989). High-performance liquid chromatography on continuous polymer beds. Journal of Chromatography. A, 473, 273–275.

    Article  Google Scholar 

  44. Buszewski, B., Dziubakiewicz, E., & Szumski, M. (2012). Techniki elektromigracyjne: teoria i praktyka. Wydawnictwo MALAMUT.

    Google Scholar 

  45. Courtois, J., Szumski, M., Byström, E., Iwasiewicz, A., Shchukarev, A., & Irgum, K. (2006). A study of surface modification and anchoring techniques used in the preparation of monolithic microcolumns in fused silica capillaries. Journal of Separation Science, 29, 14–24.

    Article  CAS  PubMed  Google Scholar 

  46. Szumski, M., & Buszewski, B. (2014). Preparation of monolithic capillary chromatographic columns using supercritical fluid as a porogen solvent. Chromatographia, 77, 1009–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo, Q., Shen, Y., Hixson, K. K., Zhao, R., Yang, F., Moore, R. J., Mottaz, H. M., & Smith, R. D. (2005). Preparation of 20-μm-i.d. silica-based monolithic columns and their performance for proteomics analyses. Analytical Chemistry, 77, 5028–5035.

    Article  CAS  PubMed  Google Scholar 

  48. Dulay, M. T., Quirino, J. P., Bennett, B. D., Kato, M., & Zare, R. N. (2001). Photopolymerized sol−gel monoliths for capillary electrochromatography. Analytical Chemistry, 73, 3921–3926.

    Article  CAS  PubMed  Google Scholar 

  49. Wen, J., Guillo, C., Ferrance, J. P., & Landers, J. P. (2006). DNA extraction using a tetramethyl orthosilicate-grafted photopolymerized monolithic solid phase. Analytical Chemistry, 78, 1673–1681.

    Article  CAS  PubMed  Google Scholar 

  50. Svec, F. (2006). Less common applications of monoliths: I. Microscale protein map** with proteolytic enzymes immobilized on monolithic supports. Electrophoresis, 27, 947–961.

    Article  CAS  PubMed  Google Scholar 

  51. Křvenková, J., Bilková, Z., & Foret, F. (2005). Chararacterization of a monolithic immobilized trypsin microreactor with on-line coupling to ESI-MS. Journal of Separation Science, 28, 1675–1684.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusław Buszewski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Szumski, M., Buszewski, B. (2022). Miniaturization in Separation Techniques. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-63957-0_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63957-0_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63957-0

  • Online ISBN: 978-3-030-63957-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation