Discovery and Development of Semiconductors and Structures for Photoelectrochemical Energy Conversion

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Part of the book series: Springer Handbooks ((SHB))

  • 4758 Accesses

Abstract

For the past several decades semiconductor structures have been under intense research and development in laboratories worldwide for applications in solar energy conversion. Beyond their utilization in commercial photovoltaic systems, their capability of producing storable chemical fuels from sunlight is viewed as a next key step in their technological evolution. An intense push is thus currently underway for the discovery of semiconductors that function at high solar-to-chemical efficiencies and stabilities when in contact with an aqueous solution, for example, water. This, however, presents an inherently more formidable and complex set of optoelectronic and chemical requirements. Briefly set forth are foundational relationships between the crystalline and electronic structures of semiconductors and the requisite properties for optimal photoelectrochemical performance. Recent discoveries in a wide range of semiconductor systems and their status of current development are described, with many promising candidates emerging, including in the oxides, chalcogenides, nitrides, and the covalent group-IV and III-V semiconductors. Yet, each semiconductor exhibits key problems that must be unlocked using innovative approaches founded in further advances in fundamental research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 298.53
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 385.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becquerel, E.: Memoire sur les effets electriques produits sous l’influence des rayons solaires. Comptes Rendus. 9, 561–567 (1839)

    Google Scholar 

  2. Brattain, W.H., Barrett, C.G.B.: Experiments on the interface between germanium and an electrolyte. Bell Syst. Tech. J. 34, 129–176 (1955)

    Article  Google Scholar 

  3. Allen, J.W., Grimmeiss, H.G.: Visible-light emitting diodes – the formic years. Mater. Sci. Forum. 590, 1–16 (2008)

    Article  CAS  Google Scholar 

  4. Dupuis, R.D., Krames, M.R.: History, development, and applications of high-brightness visible light-emitting diodes. J. Lightwave Tech. 26, 1154–1171 (2008)

    Article  CAS  Google Scholar 

  5. Dewald, J.F.: The charge and potential distributions at the zinc oxide electrode. Bell Syst. Tech. J. 39, 615–639 (1960)

    Article  Google Scholar 

  6. Harten, H.U.: The surface recombination on silicon contacting an electrolyte. J. Phys. Chem. Solids. 14, 220–225 (1960)

    Article  CAS  Google Scholar 

  7. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37–38 (1972)

    Article  CAS  PubMed  Google Scholar 

  8. Nozik, A.J.: p-n photoelectrolysis cells. Appl. Phys. Lett. 29, 150–153 (1976)

    Article  CAS  Google Scholar 

  9. Nozik, A.J.: Photochemical diodes. Appl. Phys. Lett. 30, 567–569 (1977)

    Article  CAS  Google Scholar 

  10. Nozik, A.J., Memming, R.: Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996)

    Article  CAS  Google Scholar 

  11. Seger, B., Castelli, I.E., Vesborg, P.C.K., Jacobsen, K.W., Hansen, O., Chorkendorff, I.: 2-Photon tandem devices for water splitting: comparing photocathode first versus photoanode first designs. Energy Environ. Sci. 7, 2397–2413 (2014)

    Article  CAS  Google Scholar 

  12. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. Miller, E.L.: Solar hydrogen production by photoelectrochemical water splitting: the promise and challenge. In: Vayssieres, L. (ed.) On Solar Hydrogen and Nanotechnology. Wiley, Asia (2009)

    Google Scholar 

  14. Miller, E.L., Deangelis, A., Mallory, S.: Multijunction approaches to photoelectrochemical water splitting. In: Krol, R.D., Gratzel, M. (eds.) Photoelectrochemical Hydrogen Production. Springer, New York (2012)

    Google Scholar 

  15. Sivula, K., Gratzel, M.: Tandem photoelectrochemical cells for water splitting. In: Lewerenz, H.-J., Peter, L. (eds.) Photoelectrochemical Water Splitting. RSC Publishing, Cambridge (2013)

    Google Scholar 

  16. Gerischer, H.: Uber den ablauf von redoxreaktionen an metallen und an halbleitern. I. Allgemeines zum elektronenubergang zwischen einem festkorper und einem redoxelektrolyten. Z. Phys. Chem. N. F. 26, 223 (1960)

    Article  CAS  Google Scholar 

  17. Gerischer, H.: Electrochemical photo and solar cells principles and some experiments. Electroanaly. Chem. Interfac. Electrochem. 58, 263–274 (1975)

    Article  CAS  Google Scholar 

  18. Morrison, S.R.: Electrochemistry of Semiconductor and Metal Electrodes. Plenum Press, New York (1980)

    Book  Google Scholar 

  19. Myamlin, V.A., Pleskov, Y.V.: Electrochemistry of Semiconductors. Plenum Press, New York (1967)

    Book  Google Scholar 

  20. Sato, N.: Electrochemistry at Metal and Semiconductor Electrodes. Elsevier, Amsterdam (1998)

    Google Scholar 

  21. Gomes, W.G., Cardon, F.: Electron energy levels in semiconductor electrochemistry. Progr. Surf. Sci. 12, 155–216 (1982)

    Article  CAS  Google Scholar 

  22. Zhang, Z., Yates Jr., J.T.: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Casey, H.C., Sell, D.D., Wecht, K.W.: Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV. J. Appl. Phys. 46, 250–257 (1975)

    Article  CAS  Google Scholar 

  24. Murphy, A.B..: Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water splitting. Solar Energy Mater. Solar Cells. 91, 1326–1337 (2007)

    Article  CAS  Google Scholar 

  25. Sivula, K., van de Krol, R.: Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. 1, 1–16 (2016)

    Google Scholar 

  26. Rajeshwar, K., Hossain, M.K., Macaluso, R.T., Janaky, C., Varga, A., Kulesza, P.J.: Review-copper oxide-based ternary and quaternary oxides: where solid-state chemistry meets photoelectrochemistry. J. Electrochem. Soc. 165, H3192–H3206 (2018)

    Article  CAS  Google Scholar 

  27. Sullivan, I., Zoellner, B., Maggard, P.A.: Copper(I)-based p-type oxides for photoelectrochemical and photovoltaic solar energy conversion. Chem. Mater. 28, 5999–6016 (2016)

    Article  CAS  Google Scholar 

  28. Gratzel, M.: Photoelectrochemical cells. Nature. 414, 338–344 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Tomkiewicz, M., Fay, H.: Photoelectrolysis of water with semiconductors. Appl. Phys. 18, 1–28 (1979)

    Article  CAS  Google Scholar 

  30. Maruska, H.P., Ghosh, A.K.: Photocatalytic decomposition of water at semiconductor electrodes. Sol. Energy. 20, 443–458 (1978)

    Article  CAS  Google Scholar 

  31. Scaife, D.E.: Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy. 25, 41–54 (1980)

    Article  CAS  Google Scholar 

  32. Matsumoto, Y.: Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J. Solid St. Chem. 126, 227–234 (1996)

    Article  CAS  Google Scholar 

  33. Yoneyama, H., Sakamoto, H., Tamura, H.: A photoelectrochemical cell with production of hydrogen and oxygen by a cell reaction. Electrochim. Acta. 20, 341–345 (1975)

    Article  CAS  Google Scholar 

  34. Kainthla, R.C., Zelenay, B., O'M, J.: Bockris: significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J. Electrochem. Soc. 134, 841–845 (1987)

    Article  CAS  Google Scholar 

  35. Khaselev, O., Bansal, A., Turner, J.A.: High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrog. Energy. 26, 127–132 (2001)

    Article  CAS  Google Scholar 

  36. Parkinson, B.: On the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984)

    Article  CAS  Google Scholar 

  37. Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Schwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 1–16 (2010)

    Article  CAS  Google Scholar 

  38. Canadell, E., Doublet, M.-L., Iung, C.: Orbital Approach to the Electronic Structure of Solids. Oxford University Press, New York (2012)

    Book  Google Scholar 

  39. Burdett, J.K. (ed.): Chemical Bonding in Solids. Oxford University Press, New York (1995)

    Google Scholar 

  40. Albright, T.A., Burdett, J.K., Whangbo, M.-W. (eds.): Orbitals Interactions in Chemistry. Wiley, Hoboken (2013)

    Google Scholar 

  41. Canadell, E., Whangbo, M.-H.: Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides. Chem. Rev. 91, 965–1034 (1991)

    Article  CAS  Google Scholar 

  42. Woodward, P.M., Mizoguchi, H., Kim, Y.-I., Stoltzfus, M.W.: The electron structure of metal oxides. In: Fierro, J.L.G. (ed.) Metal Oxides: Chemistry and Applications. CRC Press, Hoboken (2005)

    Google Scholar 

  43. Inoue, Y.: Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2, 364–386 (2009)

    Article  CAS  Google Scholar 

  44. Mizoguchi, H., Eng, H.W., Woodward, P.M.: Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+. Inorg. Chem. 43, 1667–1680 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. Mizoguchi, H., Woodard, P.M.: Electronic structure studies of main group oxides possessing edge-sharing octahedra: implications for the design of transparent conducting oxides. Chem. Mater. 16, 5233–5248 (2004)

    Article  CAS  Google Scholar 

  46. Medvedeva, J.E., Hettiarachchi, C.L.: Tuning the properties of complex transparent conducting oxides: role of crystal symmetry, chemical composition, and carrier generation. Phys. Rev. B. 81, 125116.:1–16 (2010)

    Article  CAS  Google Scholar 

  47. Allen, J.P., Carey, J.J., Walsh, A.: Electronic structures of antimony oxides. J. Phys. Chem. C. 117, 14759–14769 (2013)

    Article  CAS  Google Scholar 

  48. Ha, V.A., Ricci, F., Rignanese, G.M., Hautier, G.: Structural design principles for low hole effective mass s-orbital-based p-type oxides. J. Mater. Chem. C. 5, 5772–5779 (2017)

    Article  CAS  Google Scholar 

  49. Mattheiss, L.F.: Crystal-field effects in the tight-binding approximation: ReO3 and perovskite structures. Phys. Rev. B. 2, 3918–3935 (1970)

    Article  Google Scholar 

  50. Burdett, J.K.: Electronic control of the geometry of rutile and related structures. Inorg. Chem. 24, 2244–2253 (1985)

    Article  CAS  Google Scholar 

  51. Vasala, S., Karppinen, M.: A2B′B″O6 perovskites: a review. Progr. Solid St. Chem. 43, 1–36 (2015)

    Article  CAS  Google Scholar 

  52. Grabowska, E.: Selected perovskite oxides: characterization, preparation and photocatalytic properties – a review. Appl. Cat. B Environ. 186, 97–126 (2016)

    Article  CAS  Google Scholar 

  53. Wang, W., Tade, M.O., Shao, Z.: Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44, 5371–5408 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. Chadi, D.J., Cohen, M.L.: Tight-binding calculations of the valence bands of diamond and zincblende crystals. Phys. Status Solidi. 68, 405–419 (1975)

    Article  CAS  Google Scholar 

  55. Singh, J.: Semiconductor Devices: Basic Principles. Wiley, New York (2001)

    Google Scholar 

  56. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)

    Article  CAS  Google Scholar 

  57. Oba, F., Kumagai, Y.: Design and exploration of semiconductors from first principles: a review of recent advances. Appl. Phys. Express. 11, 060101(1–30) (2018)

    Article  Google Scholar 

  58. Robertson, J., Chen, C.W.: Electronic structure of the ferroelectric layered perovskite SrBi2Ta2O9. Appl. Phys. Lett. 69, 1704–1706 (1996)

    Article  CAS  Google Scholar 

  59. Boltersdorf, J., Maggard, P.A.: Silver exchange of layered metal oxides and their photocatalytic activities. ACS Catal. 3, 2547–2555 (2013)

    Article  CAS  Google Scholar 

  60. Boltersdorf, J., King, N., Maggard, P.A.: Flux-mediated crystal growth of metal oxides: synthetic tunability of particle morphologies, sizes, and surface features for photocatalysis research. CrystEngComm. 17, 2225–2241 (2015)

    Article  CAS  Google Scholar 

  61. Arney, D., Maggard, P.A.: Effect of platelet-shaped surfaces and silver-cation exchange on the photocatalytic hydrogen production of RbLaNb2O7. ACS Catal. 2, 1711–1717 (2012)

    Article  CAS  Google Scholar 

  62. Doran, N.J.: Electronic structure and band theory of transition metal dichalcogenides. Physica. 99B, 227–237 (1980)

    Google Scholar 

  63. Rawat, A., Jena, N., Dimple, Sarkar, A.D.: A comprehensive study on carrier mobility and artificial photosynthetic properties in group VI B transition metal dichalcogenide monolayers. J. Mater. Chem. A. 6, 8693–8704 (2018)

    Article  CAS  Google Scholar 

  64. Blossey, D.F.: Wannier exciton in an electric field. II. Electroabsorption in direct-band-gap solids. Phys. Rev. B. 3, 1382–1391 (1971)

    Article  Google Scholar 

  65. Dvorak, M., Wei, S.-H., Wu, Z.: Origin of the variation of exciton binding energy in semiconductors. Phys. Rev. Lett. 110, 016402(1–5) (2013)

    Article  PubMed  CAS  Google Scholar 

  66. Austin, I.G., Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)

    Article  CAS  Google Scholar 

  67. Rettie, A.J.E., Chemelewski, W.D., Emin, D., Mullins, C.B.: Unraveling small-polaron transport in metal oxide photoelectrodes. J. Phys. Chem. Lett. 7, 471–479 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. Devreese, J.T.: Polarons in Ionic Crystals and Polar Semiconductors. American Elsevier Pub. Co, Amsterdam (1972)

    Google Scholar 

  69. Shockley, W., Read Jr., W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  CAS  Google Scholar 

  70. Zakutayev, A., Caskey, C.M., Fioretti, A.N., Ginley, D.S., Vidal, J., Stevanovic, V., Tea, E., Lany, S.: Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. Kurchin, R.C., Gorai, P., Buonassisi, T., Stevanovic, V.: Structural and chemical features giving rise to defect tolerance of binary semiconductors. Chem. Mater. 30, 5583–5592 (2018)

    Article  CAS  Google Scholar 

  72. Morgan, B.J., Scanlon, D.O., Watson, G.W.: Small polarons in Nb- and Ta-doped rutile and anatase TiO2. J. Mater. Chem. 19, 5175–5178 (2009)

    Article  CAS  Google Scholar 

  73. Sharp, I.D., Cooper, J.K., Toma, F.M., Buonsanti, R.: Bismuth vanadate as a platform for accelerating discovery and development of complex transition-metal oxide photoanodes. ACS Energy Lett. 2, 139–150 (2017)

    Article  CAS  Google Scholar 

  74. Park, Y., McDonald, K.J., Choi, K.-S.: Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321–2337 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. Kato, H., Hori, M., Konta, R., Shimodaira, Y., Kudo, A.: Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible-light irradiation. Chem. Lett. 33, 1348–1349 (2004)

    Article  CAS  Google Scholar 

  76. Kuang, Y., Jia, Q., Ma, G., Hisatomi, T., Minegishi, T., Nishiyama, N., Nakabayashi, M., Shibata, N., Yamada, T., Kudo, A., Domen, K.: Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nat. Energy. 2, 16191-1–16191-9 (2016)

    Google Scholar 

  77. Kim, T.W., Choi, K.-S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. 343, 990–994 (2014)

    Article  CAS  PubMed  Google Scholar 

  78. Zhong, D.K., Choi, S., Gamelin, D.R.: Near-complete suppression of surface recombination in solar photoelectrolysis by “co-pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133, 18370–18377 (2011)

    Article  CAS  PubMed  Google Scholar 

  79. Walsh, A., Yan, Y., Huda, M.N., Al-Jassim, M.M., Wei, S.-H.: Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem. Mater. 21, 547–551 (2009)

    Article  CAS  Google Scholar 

  80. Zhao, Z., Li, Z., Zou, Z.: Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 13, 4746–4753 (2011)

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, W., Wu, F., Li, J., Yan, D., Tao, J., **, Y., Liu, M.: Unconventional relation between charge transport and photocurrent via boosting small polaron hop** for photoelectrochemical water splitting. ACS Energy Lett. 3, 2232–2239 (2018)

    Article  CAS  Google Scholar 

  82. Abdi, F.F., Han, L., Smets, A.H.M., Zeman, M., Dam, B., van de Krol, R.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195–2202 (2013)

    Article  PubMed  CAS  Google Scholar 

  83. Jiang, C.-M., Segev, G., Hess, L.H., Liu, G., Zaborski, G., Toma, F.M., Cooper, J.K., Sharp, I.D.: Composition-dependent functionality of copper vanadate photoanodes. ACS Appl. Mater. Interfaces. 10, 10627–10633 (2018)

    Article  CAS  PubMed  Google Scholar 

  84. Lumley, M.A., Choi, K.-S.: Investigation of pristine and (Mo,W)-doped Cu11V6O26 for use as photoanodes for solar water splitting. Chem. Mater. 29, 9472–9479 (2017)

    Article  CAS  Google Scholar 

  85. Yan, Q., Yu, J., Suram, S.K., Zhou, L., Shinde, A., Newhouse, P.F., Chen, W., Li, G., Persson, K.A., Gregoire, J.M., Neaton, J.B.: Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. PNAS. 114, 3040–3043 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Guo, W., Chemelewski, W.D., Mabayoje, O., **ao, P., Zhang, Y., Mullins, C.B.: Synthesis and characterization of CuV2O6 and Cu2V2O7: two photoanode candidates for photoelectrochemical water oxidation. J. Phys. Chem. C. 119, 27220–27227 (2015)

    Article  CAS  Google Scholar 

  87. Yourey, J.E., Bartlett, B.M.: Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. J. Mater. Chem. 21, 7651–7660 (2011)

    Article  CAS  Google Scholar 

  88. Li, J., Griep, M., Choi, Y., Chu, D.: Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode. Chem Comm. 54, 3331–3334 (2018)

    Article  CAS  PubMed  Google Scholar 

  89. Kamimura, S., Murakami, N., Tsubota, T., Ohno, T.: Fabrication and characterization of a p-type Cu3Nb2O8 photocathode toward photoelectrochemical reduction of carbon dioxide. Appl. Cat. B. 174, 471–476 (2015)

    Article  CAS  Google Scholar 

  90. Zhou, L., Shinde, A., Suram, S.K., Stein, H.S., Bauers, S.R., Zakutayev, A., DuChene, J.S., Liu, G., Peterson, E.A., Neaton, J.B., Gregoire, J.M.: Bi-containing n-FeWO4 thin films provide the largest photovoltage and highest stability for a sub-2 eV band gap photoanode. ACS Energy Lett. 3, 2769–2774 (2018)

    Article  CAS  Google Scholar 

  91. Du, C., Yang, J., Yang, J., Zhao, Y., Chen, R., Shan, B.: An iron oxide-copper bismuth oxide photoelectrochemical cell for spontaneous water splitting. Int. J. Hydrog. Energy. 43, 22807–22814 (2018)

    Article  CAS  Google Scholar 

  92. Seo, J., Nishiyama, H., Yamada, T., Domen, K.: Visible-light-responsive photoanodes for highly active, stable water oxidation. Angew. Chem. Int. Ed. 57, 8396–8415 (2018)

    Article  CAS  Google Scholar 

  93. Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M., Gonze, X.: Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat Commun. 4, 2292–2299 (2013)

    Article  PubMed  CAS  Google Scholar 

  94. Noureldine, D., Takanabe, K.: State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: electronic structures and optoelectronic properties. Cat. Sci. Technol. 6, 7656–7670 (2016)

    Article  CAS  Google Scholar 

  95. Boltersdorf, J., Sullivan, I., Shelton, T.L., Wu, Z., Gray, M., Zoellner, B., Osterloh, F.E., Maggard, P.A.: Flux synthesis, optical and photocatalytic properties of n-type Sn2TiO4: hydrogen and oxygen evolution under visible light. Chem. Mater. 28, 8876–8889 (2016)

    Article  CAS  Google Scholar 

  96. Zhu, Z., Sarker, P., Zhao, C., Zhou, L., Grimm, R.L., Huda, M.N., Rao, P.M.: Photoelectrochemical properties and behavior of α-SnWO4 photoanodes synthesized by hydrothermal conversion of WO3 films. ACS Appl. Mater. Interfaces. 9, 1459–1470 (2017)

    Article  CAS  PubMed  Google Scholar 

  97. Nishiro, R., Takano, Y., Jia, Q., Yamaguchi, M., Iwase, A., Kuang, Y., Minegishi, T., Yamada, T., Domen, K., Kudo, A.: A CoOx-modified SnNb2O6 photoelectrode for highly efficient oxygen evolution from water. Chem Commun. 53, 629–632 (2017)

    Article  CAS  Google Scholar 

  98. Sivula, K., Le Formal, F., Gratzel, M.: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem. 4, 432–449 (2011)

    Article  CAS  PubMed  Google Scholar 

  99. Cesar, I., Sivula, K., Kay, A., Zboril, R., Gratzel, M.: Influence of feature size, film thickness, and silicon do** on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C. 113, 772–782 (2009)

    Article  CAS  Google Scholar 

  100. Zhong, D.K., Sun, J.W., Inumaru, H., Gamelin, D.R.: Solar water oxidation by composite catalyst α-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086–6087 (2009)

    Article  CAS  PubMed  Google Scholar 

  101. Kim, J.Y., Magesh, G., Youn, D.H., Jang, J.W., Kubota, J., Domen, K., Lee, J.S.: Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681(1–8) (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  102. Shinar, R., Kennedy, J.H.: Photoactivity of doped α-Fe2O3 electrodes. Solar Energy Mater. 6, 323–335 (1982)

    Article  CAS  Google Scholar 

  103. Benjelloun, D., Bonnet, J.P., Doumerc, J.P., Launay, J.C., Onillon, M., Hagenmuller, P.: Anisotropy of the electrical properties of iron-oxide α-Fe2O3. Mater. Chem. Phys. 10, 503–518 (1984)

    Article  CAS  Google Scholar 

  104. Sanchez, C., Sieber, K.D., Somorjai, G.A.: The photoelectrochemistry of niobium-doped α-Fe2O3. J. Electroanalyt. Chem. Interf. Electrochem. 252, 269–290 (1988)

    Article  CAS  Google Scholar 

  105. Dom, R., Subasri, R., Radha, K., Borse, P.H.: Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid St. Comm. 151, 470–473 (2011)

    Article  CAS  Google Scholar 

  106. Soliman, S., Elfalaky, A., Fecher, G.H., Felser, C.: Electronic structure calculations for ZnFe2O4. Phys. Rev. B. 83, 085205(1–6) (2011)

    Article  CAS  Google Scholar 

  107. Matsumoto, Y., Omae, M., Sugiyama, K., Sato, E.-i.: New photocathode materials for hydrogen evolution: CaFe2O4 and Sr7Fe10O22. J. Phys. Chem. 91, 577–581 (1987)

    Article  CAS  Google Scholar 

  108. Ida, S., Yamada, K., Matsunaga, T., Hagiwara, H., Matsumoto, Y., Ishihara, T.: Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J. Am. Chem. Soc. 132, 17343–17345 (2010)

    Article  CAS  PubMed  Google Scholar 

  109. Sekizawa, K., Nonaka, T., Arai, T., Morikawa, T.: Structural improvement of CaFe2O4 by metal do** toward enhanced cathodic photocurrent. ACS Appl Mater Interfaces. 6, 10969–10973 (2014)

    Article  CAS  PubMed  Google Scholar 

  110. Wang, Z., Nayak, P.K., Caraveo-Frescas, J.A., Alshareef, H.N.: Recent developments in p-type oxide semiconductor materials and devices. Adv. Mater. 28, 3831–3892 (2016)

    Article  CAS  PubMed  Google Scholar 

  111. Paracchino, A., Laporte, V., Sivula, K., Gratzel, M., Thimsen, E.: Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011)

    Article  CAS  PubMed  Google Scholar 

  112. Tilley, S.D., Schreier, M., Azevedo, J., Stefik, M., Graetzel, M.: Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water splitting photocathodes. Adv. Funct. Mater. 24, 303–311 (2014)

    Article  CAS  Google Scholar 

  113. Dubale, A.A., Pan, C.-J., Tamirat, A.G., Chen, H.-M., Su, W., Chen, C.-H., Rick, J., Ayele, D.W., Aragaw, B.A., Lee, J.-F.: Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A. 3, 12482–12499 (2015)

    Article  CAS  Google Scholar 

  114. Morales-Guio, C.G., Tilley, S.D., Vrubel, H., Gratzel, M., Hu, X.: Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5, 4059–4059 (2014)

    Article  CAS  Google Scholar 

  115. Luo, J., Steier, L., Son, M.K., Schreier, M., Mayer, T.M., Gratzel, M.: Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16, 1848–1857 (2016)

    Article  CAS  PubMed  Google Scholar 

  116. Tanaka, H., Shimakawa, T., Miyata, T., Sato, H., Minami, T.: Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions. Appl. Surf. Sci. 244, 568–572 (2005)

    Article  CAS  Google Scholar 

  117. Minami, T., Nishi, Y., Miyata, T.: Heterojunction solar cell with 6% efficiency based on an N-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet. Appl. Phys. Express. 8, 022301–022301 (2015)

    Article  CAS  Google Scholar 

  118. Joshi, U.A., Palasyuk, A., Arney, D., Maggard, P.A.: Semiconducting oxides to facilitate the conversion of solar energy to chemical fuels. J. Phys. Chem. Lett. 1, 2719–2726 (2010)

    Article  CAS  Google Scholar 

  119. Sahoo, P.P., Zoellner, B., Maggard, P.A.: Optical, electronic, and photoelectrochemical properties of the p-type Cu3-xVO4 semiconductor. J. Mater. Chem. A. 3, 4501–4509 (2015)

    Article  CAS  Google Scholar 

  120. Fuoco, L., Joshi, U.A., Maggard, P.A.: Preparation and photoelectrochemical properties of p-type Cu5Ta11O30 and Cu3Ta7O19. J. Phys. Chem. C. 116, 10490–10497 (2012)

    Article  CAS  Google Scholar 

  121. Joshi, U.A., Palasyuk, A.M., Maggard, P.A.: Photoelectrochemical investigation and electronic structure of a p-type CuNbO3 photocathode. J. Phys. Chem. C. 115, 13534–13539 (2011)

    Article  CAS  Google Scholar 

  122. Joshi, U.A., Maggard, P.A.: CuNb3O8: a p-type semiconducting metal oxide photoelectrode. J. Phys. Chem. Lett. 3, 1577–1581 (2012)

    Article  CAS  PubMed  Google Scholar 

  123. Prevot, M.S., Guijarro, N., Sivula, K.: Enhancing the performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. ChemSusChem. 8, 1359–1367 (2015)

    Article  CAS  PubMed  Google Scholar 

  124. Read, C.G., Park, Y., Choi, K.-S.: Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J. Phys. Chem. Lett. 3, 1872–1876 (2012)

    Article  CAS  PubMed  Google Scholar 

  125. Gu, J., Yan, Y., Krizan, J.W., Gibson, Q.D., Detweiler, Z.M., Cava, R.J., Bocarsly, A.B..: p-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J. Am. Chem. Soc. 136, 830–833 (2014)

    Article  CAS  PubMed  Google Scholar 

  126. Omata, T., Nagatani, H., Suzuki, I., Kita, M., Yanagi, H., Ohashi, N.: Wurtzite CuGaO2: a new direct and narrow band gap oxide semiconductor applicable as a solar cell absorber. J. Am. Chem. Soc. 136, 3378–3381 (2014)

    Article  CAS  PubMed  Google Scholar 

  127. Okumura, H., Sato, K., Kakeshita, T.: Electronic structure, defect formation energy, and photovoltaic properties of wurtzite-derived CuGaO2. J. Appl. Phys. 123, 161584 (2018)

    Article  CAS  Google Scholar 

  128. Ong, K.P., Bai, K., Blaha, P., Wu, P.: Electronic structure and optical properties of AFeO2 (A = Ag, Cu) within GGA calculations. Chem. Mater. 19, 634–640 (2007)

    Article  CAS  Google Scholar 

  129. Tengfei, J., Zhao, Y., Xue, H.: Boosting the performance of delafossite photocathode through constructing a CuFeO2/CuO heterojunction for photoelectrochemical water reduction. J. Mater. Sci. 54, 11951–11958 (2019)

    Article  CAS  Google Scholar 

  130. Sullivan, I., Sahoo, P.P., Fuoco, L., Hewitt, A.S., Stuart, S., Dougherty, D., Maggard, P.A.: Cu-deficiency in the p-type semiconductor Cu5-xTa11O30: impact on its crystalline structure, surfaces, and photoelectrochemical properties. Chem. Mater. 26, 6711–6721 (2014)

    Article  CAS  Google Scholar 

  131. Zoellner, B., O'Donnell, S., Wu, Z., Itanze, D., Carbone, A., Osterloh, F.E., Geyer, S., Maggard, P.A.: Impact of Nb(V) substitution on the structure and optical and photoelectrochemical properties of the Cu5(Ta1-xNbx)11O30 solid solution. Inorg. Chem. 58, 6845–6857 (2019)

    Article  CAS  PubMed  Google Scholar 

  132. King, N., Sahoo, P.P., Fuoco, L., Stuart, S., Dougherty, D., Liu, Y., Maggard, P.A.: Copper deficiency in the p-type semiconductor Cu1-xNb3O8. Chem. Mater. 26, 2095–2104 (2014)

    Article  CAS  Google Scholar 

  133. Zhang, Z., Lindley, S.A., Dhall, R., Bustillo, K., Han, W., **e, E., Cooper, J.K.: Beneficial CuO phase segregation in the ternary p-type oxide photocathode CuBi2O4. ACS Appl. Energy Mater. 2, 4111–4117 (2019)

    Article  CAS  Google Scholar 

  134. Lin, H., Long, X., Hu, J., Qiu, Y., Wang, Z., Ma, M., An, Y., Yang, S.: Exploratory study of ZnxPbOy photoelectrodes for unassisted overall solar water splitting. ACS Appl. Mater. Interfaces. 10, 10918–10926 (2018)

    Article  CAS  PubMed  Google Scholar 

  135. Peng, H., Bikowski, A., Zakutayev, A., Lany, S.: Pathway to oxide photovoltaics via band-structure engineering of SnO. APL. Mater. 4, 106103(1–9) (2016)

    Article  CAS  Google Scholar 

  136. Giefers, H., Porsch, F., Wortmann, G.: Kinetics of the disproportionation of SnO. Solid St. Ionics. 176, 199–207 (2005)

    Article  CAS  Google Scholar 

  137. Shin, D., Saparov, B., Mitzi, D.B.: Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv. Energy Mater. 7, 1202366 (2017)

    Google Scholar 

  138. Todorov, T.K., Reuter, K.B., Mitzi, D.B.: High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 22, E156–E159 (2010)

    Article  CAS  PubMed  Google Scholar 

  139. Todorov, T.K., Gunawan, O., Gokmen, T., Mitzi, D.B.: Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell, Progr. Photovolt. Res. Appl. 21, 82–87 (2013)

    CAS  Google Scholar 

  140. Persson, C.: Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107, 053710(1–8) (2010)

    Article  CAS  Google Scholar 

  141. Liu, H.-R., Chen, S., Zhai, Y.-T., **ang, H.J., Gong, X.G., Wei, S.-H.: First principles study on the effective masses of zinc-blend-derived Cu2Zn-IV-VI4 (IV = Sn, Ge, Si and VI = S, Se). J. Appl. Phys. 112, 093717(1–6) (2012)

    Article  CAS  Google Scholar 

  142. Kobayashi, H., Sato, N., Orita, M., Kuang, Y., Kaneko, H., Minegishi, T., Yamada, T., Domen, K.: Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. Energy Environ. Sci. 11, 3003–3009 (2018)

    Article  CAS  Google Scholar 

  143. Zhao, J., Minegishi, T., Zhang, L., Zhong, M., Gunawan, Nakabayashi, M., Ma, G., Hisatomi, T., Katayama, M., Ikeda, S., Shibata, N., Yamada, T., Domen, K.: Surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method. Angew. Chem. Int. Ed. Engl. 53, 11808–11812 (2014)

    Article  CAS  PubMed  Google Scholar 

  144. McKone, J.R., Pieterick, A.P., Gray, H.B., Lewis, N.S.: Hydrogen evolution Pt/Ru-coated p-type WSe2 photocathodes. J. Am. Chem. Soc. 135, 223–231 (2013)

    Article  CAS  PubMed  Google Scholar 

  145. Zhao, J., Minegishi, T., Kaneko, H., Ma, G., Zhong, M., Nakabayashi, M., Hisatomi, T., Katayama, M., Shibata, N., Yamada, T., Domen, K.: Efficient hydrogen evolution on (CuInS2)x(ZnS)1-x solid solution-based photocathodes under simulated sunlight. Chem. Commun. 55, 470–473 (2019)

    Article  CAS  Google Scholar 

  146. Kaneko, H., Minegishi, T., Nakabayashi, M., Shibata, N., Kuang, Y., Yamada, T., Domen, K.: A novel photocathode material for sunlight-driven overall water splitting: solid solution of ZnSe and Cu(In,Ga)Se2. Adv. Funct. Mater. 26, 4570–4577 (2016)

    Article  CAS  Google Scholar 

  147. Hayashi, T., Niishiro, R., Ishihara, H., Yamaguchi, M., Jia, Q., Kuang, Y., Higashi, T., Iwase, A., Minegishi, T., Yamada, T., Domen, K., Kudo, A.: Powder-based (CuGa1-yIny)1-xZn2xS2 solid solution photocathodes with a largely positive onset potential for solar water splitting. Sustain Energy Fuels. 2, 2016–2024 (2018)

    Article  CAS  Google Scholar 

  148. Su, J., Minegishi, T., Katayama, M., Domen, K.: Photoelectrochemical hydrogen evolution from water on a surface modified CdTe thin film electrode under simulated sunlight. J. Mater. Chem. A. 5, 4486–4492 (2017)

    Article  CAS  Google Scholar 

  149. Su, J., Minegishi, T., Domen, K.: Efficient hydrogen evolution from water using CdTe photocathodes under simulated sunlight. J. Mater. Chem. A. 5, 13154–13160 (2017)

    Article  CAS  Google Scholar 

  150. Su, J., Minegishi, T., Kageshima, Y., Kobayashi, H., Hisatomi, T., Higashi, T., Katayama, M., Domen, K.: CdTe-based photoanode for oxygen evolution from water under simulated sunlight. J. Phys. Chem. Lett. 8, 5712–5717 (2017)

    Article  CAS  PubMed  Google Scholar 

  151. Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K.: Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ <= 650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002)

    Article  CAS  PubMed  Google Scholar 

  152. Ma, G., Liu, J., Hisatomi, T., Minegishi, T., Moriya, Y., Iwase, M., Nishiyama, H., Katayama, M., Yamada, T., Domen, K.: Site-selective photodeposition of Pt on a particulate Sc-La5Ti2CuS5O7 photocathode: evidence for one-dimensional charge transfer. Chem. Commun. 51, 4302–4305 (2015)

    Article  CAS  Google Scholar 

  153. Hisatomi, T., Okamura, S., Liu, J., Shinohara, Y., Ueda, K., Higashi, T., Katayama, M., Minegishi, T., Domen, D.: La5Ti2Cu1-xAgxS5O7 photocathodes operating at positive potentials during photoelectrochemical hydrogen evolution under irradiation of up to 710nm. Energy Environ. Sci. 8, 3354–3362 (2015)

    Article  CAS  Google Scholar 

  154. Rosser, T.E., Hisatomi, T., Sun, S., Anton-Garcia, D., Minegishi, T., Reisner, E., Domen, K.: La5Ti2Cu0.9Ag0.1S5O7 modified with a molecular Ni catalyst for photoelectrochemical H2 generation. Chem. Eur. J. 24, 18393–18397 (2018)

    Article  CAS  PubMed  Google Scholar 

  155. Zakutayev, A.: Design of nitride semiconductors for solar energy conversion. J. Mater. Chem. A. 4, 6742–6754 (2016)

    Article  CAS  Google Scholar 

  156. Maeda, K., Domen, K.: Oxynitride materials for solar water splitting. MRS Bull. 36, 25–31 (2011)

    Article  CAS  Google Scholar 

  157. Hitoki, G., Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Domen, K.: Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem. Lett. 7, 736–737 (2002)

    Article  Google Scholar 

  158. Fang, C.M., Orhan, E., de Wijs, G.A., Hintzen, H.T., de Groot, R.A., Marchand, R., Saillard, J.-Y., de With, G.: The electronic structure of tantalum (oxy)nitrides TaON and Ta3N5. J. Mater. Chem. 11, 1248–1252 (2001)

    Article  CAS  Google Scholar 

  159. Morbec, J.M., Narkeviciute, I., Jaramillo, T.F., Galli, F.: Optoelectronic properties of Ta3N5: a joint theoretical and experimental study. Phys. Rev. B. 90, 155204(-1)–155204(-10) (2014)

    Article  CAS  Google Scholar 

  160. Yokoyama, D., Hashiguchi, H., Maeda, K., Minegishi, T., Takata, T., Abe, R., Kubota, J., Domen, K.: Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films. 519, 2087–2092 (2011)

    Article  CAS  Google Scholar 

  161. Li, Y., Takata, T., Cha, D., Takanabe, K., Minegishi, T., Kubota, J., Domen, K.: Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 25, 125–131 (2013)

    Article  CAS  PubMed  Google Scholar 

  162. Higashi, M., Domen, K., Abe, R.: Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ. Sci. 4, 4138–4147 (2011)

    Article  CAS  Google Scholar 

  163. Nurlaela, E., Sasaki, Y., Nakabayashi, M., Shibata, N., Yamada, T., Domen, K.: Towards zero bias photoelectrochemical water splitting: onset potential improvement on a Mg:GaN modified-Ta3N5 photoanode. J. Mater. Chem. A. 6, 15265–15273 (2018)

    Article  CAS  Google Scholar 

  164. Zhong, M., Hisatomi, T., Sasaki, Y., Suzuki, S., Teshima, K., Nakabayashi, M., Shibata, N., Nishiyama, H., Katayama, M., Yamada, T., Domen, K.: Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation. Angew. Chem. Int. Ed. 56, 4739–4743 (2017)

    Article  CAS  Google Scholar 

  165. Balaz, S., Porter, S.H., Woodward, P.M., Brillson, L.J.: Electronic structure of tantalum oxynitride perovskite photocatalysts. Chem. Mater. 25, 3337–3343 (2013)

    Article  CAS  Google Scholar 

  166. Kikuchi, R., Nakamura, T., Tamura, S., Kaneko, Y., Hato, K.: Fundamental semiconducting properties of perovskite oxynitride SrNbO2N: epitaxial growth and characterization. Chem. Mater. 29, 7697–7703 (2017)

    Article  CAS  Google Scholar 

  167. Maeda, K., Domen, K.: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C. 111, 7851–7861 (2007)

    Article  CAS  Google Scholar 

  168. Higashi, M., Domen, K., Abe, R.: Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. J. Am. Chem. Soc. 135, 10238–10241 (2013)

    Article  CAS  PubMed  Google Scholar 

  169. Urabe, H., Hisatomi, T., Minegishi, T., Kubota, J., Domen, K.: Photoelectrochemical properties of SrNbO2N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discuss. 176, 213–223 (2014)

    Article  CAS  PubMed  Google Scholar 

  170. Seo, J., Hisatomi, T., Nakabayashi, M., Shibata, N., Minegishi, T., Katayama, M., Domen, K.: Efficient solar-driven water oxidation over perovskite-type BaNbO2N photoanodes absorbing visible light up to 740 nm. Adv. Energy Mater. 8, 1800094-1–1800094-9 (2018)

    Article  Google Scholar 

  171. Hu, S., Shaner, M.R., Beardslee, J.A., Lichterman, M., Brunschwig, B.S., Lewis, N.S.: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficiency water oxidation. Science. 344, 1005–1009 (2014)

    Article  CAS  PubMed  Google Scholar 

  172. Vanka, S., Arca, E., Cheng, S., Sun, K., Botton, G.A., Teeter, G., Mi, Z.: High efficiency Si photocathode protected by multifunctional GaN nanostructures. Nano Lett. 18, 6530–6537 (2018)

    Article  CAS  PubMed  Google Scholar 

  173. Gu, J., Yan, Y., Young, J.L., Steirer, K.X., Neale, N.R., Turner, J.A.: Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nat. Mater. 15, 456–462 (2016)

    Article  CAS  PubMed  Google Scholar 

  174. Gu, J., Aguiar, J.A., Ferrere, S., Steirer, K.X., Yan, Y., **ao, C., Young, J.L., Al-Jassim, M., Neale, N.R., Turner, J.A.: A graded catalytic-protective layer for an efficient and stable water-splitting photocathode. Nat. Energy. 2, 16192-1–16192-8 (2017)

    Article  CAS  Google Scholar 

  175. Wang, H.-P., Sun, K., Noh, S.Y., Kargar, A., Tsai, M.-L., Huang, M.-Y., Wang, D., He, J.-H.: High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano Lett. 15, 2817–2824 (2015)

    Article  CAS  PubMed  Google Scholar 

  176. May, M.M., Lewerenz, H.-J., Lackner, D., Dimroth, F., Hannappel, T.: Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Commun. 6, 8286-1–8286-7 (2015)

    Article  CAS  Google Scholar 

  177. Lee, M.H., Takei, K., Zhang, J., Kapadia, R., Zheng, M., Chen, Y.-Z., Nah, J., Matthews, T.S., Chueh, Y.-L., Ager, J.W., Javey, A.: p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem. Int. Ed. 51, 10760–10764 (2012)

    Article  CAS  Google Scholar 

  178. Yu, L., Kokenyesi, R.S., Keszler, D.A., Zunger, A.: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43–48 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This material is based upon work solely supported as part of the Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0021173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Maggard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maggard, P.A. (2022). Discovery and Development of Semiconductors and Structures for Photoelectrochemical Energy Conversion. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_28

Download citation

Publish with us

Policies and ethics

Navigation