Prediction Intervals of Machine Learning Models for Taxi Trip Length

  • Conference paper
  • First Online:
Recent Developments in Mathematical, Statistical and Computational Sciences (AMMCS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 343))

  • 937 Accesses

Abstract

Errors are always present in predictions produced by machine learning models. Producing a quantitative estimate of the uncertainty in a model’s output is crucial for many fields, especially those where predictive models drive important decisions. In this paper we discuss two methods for producing prediction intervals for neural network, random forest, and gradient boosted tree models. We then evaluate the prediction intervals produced by each algorithm by predicting the expected ride length for a NYC taxi trip dataset. We show that inductive conformal prediction produces the most reliable intervals for all machine learning models investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. ar**v preprintar**v:1603.04467 (2016)

  2. Scott Armstrong, J.: Long-Range Forecasting: From Crystal Ball to Computer, 2nd edn. Wiley, New York (1985)

    Google Scholar 

  3. Boström, H., Linusson, H., Löfström, T., Johansson, U.: Accelerating difficulty estimation for conformal regression forests. Ann. Math. Artif. Intell. 81(1–2), 125–144 (2017)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

  5. François, C. et al.: Keras. https://keras.io (2015)

  6. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat., 1189–1232 (2001)

    Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  8. Makridakis, Spyros: Accuracy measures: theoretical and practical concerns. Int. J. Forecast. 9(4), 527–529 (1993)

    Article  Google Scholar 

  9. Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), vol. 1, pp. 55–60. IEEE (1994)

    Google Scholar 

  10. Regression conformal prediction with nearest neighbours: Papadopoulos, Harris., Vovk, Vladimir, Gammerman, Alexander. J. Artif. Intell. Res. 40, 815–840 (2011)

    Article  Google Scholar 

  11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    Google Scholar 

  13. Zhu, L., Laptev, N.: Deep and confident prediction for time series at uber. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 103–110. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

The project was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morgan, E., Zhou, R., Feng, W. (2021). Prediction Intervals of Machine Learning Models for Taxi Trip Length. In: Kilgour, D.M., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Developments in Mathematical, Statistical and Computational Sciences. AMMCS 2019. Springer Proceedings in Mathematics & Statistics, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-030-63591-6_65

Download citation

Publish with us

Policies and ethics

Navigation