Solving Cardiac Bidomain Problems with B-spline Adaptive Collocation

  • Conference paper
  • First Online:
Recent Developments in Mathematical, Statistical and Computational Sciences (AMMCS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 343))

  • 941 Accesses

Abstract

B-spline collocation methods have been shown to be effective for solving systems of parabolic partial differential equations (PDEs). Using B-spline bases for spatial discretization and backward differentiation formulae for temporal discretization, software can be developed that allows full spatio-temporal error control throughout the solution. The software package eBACOLI, which uses \({\mathscr {C}^1}\)-continuous B-splines, has been extended for this approach to work with PDEs in one spatial dimension that have a multi-scale structure like the bidomain model, i.e., parabolic and elliptic PDEs at the macro-scale coupled with ordinary differential equations at the micro-scale. We present numerical results of cardiac bidomain simulations, validating them through comparison with solutions obtained from the software package Nektar++. The performance of eBACOLI and Nektar++ simulations are compared by considering solution times with comparable error with respect to a reference solution, showing that in addition to automatically controlling the error (a feature unavailable in Nektar++), eBACOLI is generally more than an order of magnitude faster than Nektar++ for a given error level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Num. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  Google Scholar 

  2. Auckland Bioengineering Institute: The CellML project (2011). http://www.cellml.org/

  3. de Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York, USA (1978)

    Book  Google Scholar 

  4. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar plus plus : an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015). https://doi.org/10.1016/j.cpc.2015.02.008

  5. Diaz, J.C., Fairweather, G., Keast, P.: Fortran packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination. ACM Trans. Math. Softw. 9(3), 358–375 (1983). https://doi.org/10.1145/356044.356053

  6. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008). https://doi.org/10.1137/070680503

  7. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  8. Green, K.R., Spiteri, R.J.: Extended BACOLI: solving one-dimensional multiscale parabolic pde systems with error control. ACM Trans. Math. Softw. 45(1), 8:1–8:19 (2019). https://doi.org/10.1145/3301320

  9. Hooke, N., Henriquez, C., Lanzkron, P., Rose, D.: Linear algebraic transformations of the bidomain equations: implications for numerical methods. Math. Biosci. 120(2), 127–145 (1994). https://doi.org/10.1016/0025-5564(94)90049-3. http://www.sciencedirect.com/science/article/pii/0025556494900493

  10. Keener, J.P., Bogar, K.: A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos Interdisc. J. Nonlinear Sci. 8(1), 234–241 (1998). https://doi.org/10.1063/1.166300

  11. Marsh, M.E., Ziaratgahi, S.T., Spiteri, R.J.: The secrets to the success of the Rush-Larsen method and its generalizations. IEEE Trans. Biomed. Eng. 59(9), 2506–2515 (2012). https://doi.org/10.1109/TBME.2012.2205575

    Article  Google Scholar 

  12. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962). https://doi.org/10.1109/JRPROC.1962.288235

    Article  Google Scholar 

  13. Niederer, S.A., et al.: Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1954), 4331–4351 (2011). https://doi.org/10.1098/rsta.2011.0139

    Article  MathSciNet  Google Scholar 

  14. Pancer, R.N.: The Parallel Solution of ABD Systems Arising in Numerical Methods for BVPs for ODEs. Ph.D. thesis, University of Toronto (2006)

    Google Scholar 

  15. Petzold, L.R.: A description of DASSL: a differential-algebraic system solver. In: Scientific computing (Montreal, Que., 1982), IMACS Trans Sci Comput., I, pp. 65–68. IMACS, New Brunswick, NJ (1983)

    Google Scholar 

  16. Pew, J., Li, Z., Muir, P.: Algorithm 962: BACOLI: B-spline adaptive collocation software for PDEs with interpolation-based spatial error control. ACM Trans. Math. Softw. 42(3), 25 (2016). https://doi.org/10.1145/2818312

    Article  MathSciNet  Google Scholar 

  17. Richardson, L.F.: On the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences An Interdisciplinary Journal, vol. 83(563), pp. 335–336 (1910). https://doi.org/10.1098/rspa.1910.0020. http://rspa.royalsocietypublishing.org/content/83/563/335

  18. Roth, B.J.: Action potential propagation in a thick strand of cardiac muscle. Circ. Res. 68(1), 162–173 (1991)

    Article  Google Scholar 

  19. Söderlind, G., Wang, L.: Adaptive time-step** and computational stability. J. Comput. Appl. Math. 185(2), 225–243 (2006). https://doi.org/10.1016/j.cam.2005.03.008. https://doi-org.cyber.usask.ca/10.1016/j.cam.2005.03.008

  20. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the Electrical Activity in the Heart. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Tung, L.: A bi-domain model for describing ischemic myocardial dc potentials. Ph.D. thesis, Massachusetts Institute of Technology (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Green, K.R., Spiteri, R.J. (2021). Solving Cardiac Bidomain Problems with B-spline Adaptive Collocation. In: Kilgour, D.M., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Developments in Mathematical, Statistical and Computational Sciences. AMMCS 2019. Springer Proceedings in Mathematics & Statistics, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-030-63591-6_28

Download citation

Publish with us

Policies and ethics

Navigation