Removal of Dyes From Industrial Effluents Using Bioremediation Technique

  • Chapter
  • First Online:
Strategies and Tools for Pollutant Mitigation

Abstract

Rapid growth in unstrategic development and industrialization over the few decades triggered the environmental problems worldwide. Synthetic dyes are one of the major pollutants discharged from industries such as textile, dying, printing, tannery, etc. Commonly used physicochemical techniques for the recovery of metals and dyes are electrodialysis, ozonization, flocculation, coagulation, adsorption, etc. Procurement and regenerative costs associated with these methods provided the opportunity for the scientists to search for the novel, simple, effective, ecofriendly, and cost-efficient methods. This search has given a wide scope for the use of bioremediation technique for the treatment of metals and dyes from industrial effluents. Bioremediation involves the use of natural organism for the management of industrial effluents which break down the substances aerobically and anaerobically and transform them into other components or eliminates/minimize the adverse effects of pollutants. The advantages of these methods are that these can be used in situ or ex-situ. These bioremediation methods include processes such as biosorption, bioaugmentation, bioleaching, biostimulation, etc. The present chapter highlights the application of bioremediation methods for the removal of dyes from industrial effluents. Bioremediation abilities of various biomasses in the removal of dyes are emphasized in this chapter. In the present chapter, a detailed discussion is presented on various bioremediation methods, microorganism used in bioremediation of dyes, and their advantages and disadvantages. Additionally, various mechanisms involved in bioremediation of dyes have been explained. The technical and economic aspects of the process for large-scale applications have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 147.69
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci & Technol 3:74–102

    Google Scholar 

  • Abbas N, Hussain S, Azeem F et al (2016) Characterization of a salt resistant bacterial strain Proteus sp. NA6 capable of decolorizing reactive dyes in presence of multi-metal stress. World J Microbiol Biotechnol 32(11):181. https://doi.org/10.1007/s11274-016-2141-1

    Article  CAS  Google Scholar 

  • Afshin S, Mokhtari SA, Vosoughi M, Sadeghi H, Rashtbari Y (2018) Data of adsorption of Basic Blue 41 dye from aqueous solutions by activated carbon prepared from filamentous algae. Data Brief 21:1008–1013. https://doi.org/10.1016/j.dib.2018.10.023

    Article  Google Scholar 

  • Aksu Z, Donmez G (2005) Studied the combine effect of molasses sucrose and Remazole Blue or Remazole Black B reactive dye on the growth and bioaccumulation properties of adapted Candida tropicalis. Process Biochem 40:2443–2453

    Article  CAS  Google Scholar 

  • Aksu Z, Karabayir G (2008) Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresour Technol 99:7730–7741. https://doi.org/10.1016/j.biortech.2008.01.056

    Article  CAS  Google Scholar 

  • Ali N, Hameed A, Ahmed S (2010) Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. Braz J Microbiol 41(4):907–915. https://doi.org/10.1590/S1517-83822010000400009

    Article  CAS  Google Scholar 

  • Almeida EJ, Corso CR (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317–322. https://doi.org/10.1016/j.chemosphere.2014.04.060

    Article  CAS  Google Scholar 

  • Almeida PH, Oliveira ACC, Souza GPN et al (2018) Decolorization of remazol brilliant blue R with laccase from Lentinus crinitus grown in agro-industrial by-products. An Acad Bras Cienc 90(4):3463–3473. https://doi.org/10.1590/0001-3765201820170458

    Article  CAS  Google Scholar 

  • Angelova R, Baldikova E, Pospiskova K, Maderova Z, Safarikova M, Safarik I (2016) Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J Clean Prod 137:189–194

    Article  CAS  Google Scholar 

  • Aravindhan R, Rao JR, Nair BU (2007) Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J Hazard Mater 142(1–2):68–76

    Article  CAS  Google Scholar 

  • Arpita G, Manisha GD, Sreekrishnan TR (2015) Recent advances in bioremediation of heavy metals and metal complex dyes: review. J Environ Eng C4015003:1–14. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000965

    Article  CAS  Google Scholar 

  • Asses N, Lamia A, Neila H, Moktar H (2018) Congo red decolorization and detoxification by aspergillus niger: removal mechanisms and dye degradation pathway. Biomed Res Int 3049686(9):1. https://doi.org/10.1155/2018/3049686

    Article  CAS  Google Scholar 

  • Avery SV, Tobin JM (1993) Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl Environ Microbiol 59:2851–2856

    Article  CAS  Google Scholar 

  • Bahafid W, Joutey NT, Asri M, Sayel H, Tirry N, El Ghachtouli N (2017) Yeast biomass: an alternative for bioremediation of heavy metals, yeast – industrial applications, Antonio Morata and Iris Loira, Intech Open https://doi.org/10.5772/intechopen.70559

  • Bayramoglu G, Salih B, Akbulut A, Arica MY (2019) Biodegradation of Cibacron Blue 3GA by insolubilized laccase and identification of enzymatic byproduct using MALDI-ToF-MS: toxicity assessment studies by Daphnia magna and Chlorella vulgaris. Ecotoxicol Environ Saf 170:453–460. https://doi.org/10.1016/j.ecoenv.2018.12.014

    Article  CAS  Google Scholar 

  • Brady D, Duncan JR (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41:149–154

    Article  CAS  Google Scholar 

  • Cardoso NF, Lima EC, Royer B et al (2012) Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater 241-242:146–153. https://doi.org/10.1016/j.jhazmat.2012.09.026

    Article  CAS  Google Scholar 

  • Casieri L, Varese GC, Anastasi A et al (2008) Decolorization and detoxication of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus. Folia Microbiol 53:44. https://doi.org/10.1007/s12223-008-0006-1

    Article  CAS  Google Scholar 

  • Chanmugathas P, Bollag JM (1988) A column study of the biological mobilization and speciation of cadmium in soil. Arch Environ Contam Toxicol 17:229–237

    Article  CAS  Google Scholar 

  • Chen KC, Huang WT, Wu JY, Houng JY (1999) Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotechnol 23(1):686–690. https://doi.org/10.1038/sj.jim.2900689

    Article  CAS  Google Scholar 

  • Chen CY, Kuo JT, Cheng CY, Huang YT, Ho IH, Chung YC (2009) Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system. J Hazard Mater 172(2–3):1439–1445. https://doi.org/10.1016/j.jhazmat.2009.08.009

    Article  CAS  Google Scholar 

  • Chen CC, Chen CY, Cheng CY, Teng PY, Chung YC (2011) Decolorization characteristics and mechanism of Victoria Blue R removal by Acinetobacter calcoaceticus YC210. J Hazard Mater 196:166–172. https://doi.org/10.1016/j.jhazmat.2011.09.015

    Article  CAS  Google Scholar 

  • Chojnacka K (2009) Biosorption and bioaccumulation in practice. Nova Science Publishers, New York, p 137

    Google Scholar 

  • Daneshvar N, Ayazloo M, Khataee A, Pourhassan M (2006) Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour Technol 12:121–128

    Google Scholar 

  • Dawkar VV, Jadhav UU, Jadhav SU, Govindwar SP (2008) Biodegradation of disperse textile dye Brown 3REL by newly isolated Bacillus sp. VUS. J Appl Microbiol 105(1):14–24. https://doi.org/10.1111/j.1365-2672.2008.03738.x

    Article  CAS  Google Scholar 

  • Dedyukhina EG, Eroshin VK (1991) Essential metal ions in the control of microbial metabolism. Process Biochem 26:31–37

    Article  CAS  Google Scholar 

  • El Nemr A, Abdelwahab O, Khaled A, El Sikaily A (2006) Biosorption of Direct Yellow 12 from aqueous solution using green alga Ulva lactuca. Chem Ecol 22(4):253–266. https://doi.org/10.1080/02757540600812875

    Article  CAS  Google Scholar 

  • El Sikaily A, Khaled A, El Nemr A, Abdelwahab O (2006) Removal of Methylene Blue from aqueous solution by marine green alga Ulva lactuca. Chem Ecol 22(2):149–157. https://doi.org/10.1080/02757540600579607

    Article  CAS  Google Scholar 

  • Elisangela F, Andrea Z, Fabio DG, Cristiano RM, Regina DL, Artur CP (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeter Biodegr 63:280–288

    Article  CAS  Google Scholar 

  • El-Rahim WM, Khalil WK, Eshak MG (2008) Genotoxicity studies on the removal of a direct textile dye by a fungal strain, in vivo, using micronucleus and RAPD-PCR techniques on male rats [published correction appears in J Appl Toxicol. 2008 Aug;28(6):814]. J Appl Toxicol 28(4):484–490. https://doi.org/10.1002/jat.1299

    Article  CAS  Google Scholar 

  • El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeter Biodegr 63:699–704

    Article  CAS  Google Scholar 

  • Enayatzamir K, Alikhani HA, Yakhchali B, Tabandeh F, Rodríguez-Couto S (2010) Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environ Sci Pollut Res Int 17(1):145–153. https://doi.org/10.1007/s11356-009-0109-5

    Article  CAS  Google Scholar 

  • Foroutan R, Mohammadi R, Razeghi J, Ramavandi B (2019) Performance of algal activated carbon/Fe3O4 magnetic composite for cationic dyes removal from aqueous solutions. Algal Res 40:101509

    Article  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70. https://doi.org/10.1017/S0269915XO4002022

    Article  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Ghosh A, Das P (2014) Optimization of copper adsorption by soil of polluted wasteland using response surface methodology. Indian Chem Eng 56(1):29–42

    Article  CAS  Google Scholar 

  • Guadie A, Tizazu S, Melese M, Guo W, Ngo HH, **a S (2017) Biodecolorization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake. Biotechnol Rep (Amst) 15:92–100. https://doi.org/10.1016/j.btre.2017.06.007

    Article  Google Scholar 

  • Hassan MM, Alam MZ, Anwar MN (2013) Biodegradation of textile azo dyes by bacteria isolated from dyeing industry effluent. Int Res J Biol Sci 2(8):27–31

    Google Scholar 

  • He Z, Yao Y, Lu Z, Ye Y (2014) Dynamic metabolic and transcriptional profiling of Rhodococcus sp. strain YYL during the degradation of tetrahydrofuran. Appl Environ Microbiol 80:2656–2664. https://doi.org/10.1128/AEM.04131-13

    Article  CAS  Google Scholar 

  • Hernández-Zamora M, Cristiani-Urbina E, Martínez-Jerónimo F et al (2015) Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environ Sci Pollut Res Int 22(14):10811–10823. https://doi.org/10.1007/s11356-015-4277-1

    Article  CAS  Google Scholar 

  • Herrero M, Stuckey DC (2015) Bioaugmentation and its application in wastewater treatment: a review. Chemosphere 140:119–128

    Article  CAS  Google Scholar 

  • Huang JP, Huang CP, Morehart AL (1991) Removal of heavy metals by fungal (Aspergillus oryzae) adsorption. In: Vernet JP, heavy metals in the environment. Elsevier, London

    Google Scholar 

  • Hussain S, Maqbool Z, Ali S et al (2013) Biodecolorization of Reactive Black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan. Ecotoxicol Environ Saf 98:331–338. https://doi.org/10.1016/j.ecoenv.2013.09.018

    Article  CAS  Google Scholar 

  • Jadhav UU, Dawkar VV, Ghodake GS, Govindwar SP (2008) Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS. J Hazard Mater 158(2–3):507–516. https://doi.org/10.1016/j.jhazmat.2008.01.099

    Article  CAS  Google Scholar 

  • ** Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8:1336. https://doi.org/10.3390/app8081336

    Article  CAS  Google Scholar 

  • Joho M, Inouhe M, Tohoyama H, Murayama T (1995) Nickel resistance mechanisms in yeasts and other fungi. J Ind Microbiol 14:164–168

    Article  CAS  Google Scholar 

  • Joshi B, Kabariya K, Nakrani S, Khan A, Parabia FM, Doshi HV, Thakur MC (2013) Biodegradation of turquoise blue dye by Bacillus megaterium isolated from industrial effluent. Am J Environ Protec 1(2):41–46

    Article  CAS  Google Scholar 

  • Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233:45–69. https://doi.org/10.1007/978-3-319-10479-9_2

    Article  CAS  Google Scholar 

  • Kamizono A, Nishizawa M, Teranishi Y, Murata K, Kimura A (1989) Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol Gen Genet 219:161–167

    Article  CAS  Google Scholar 

  • Karim ME, Dhar K, Hossain MT (2018) Decolorization of textile reactive dyes by bacterial monoculture and consortium screened from textile dyeing effluent. J Genet Eng Biotechnol 16(2):375–380

    Article  Google Scholar 

  • Khaled E, Hassan G, Khider M, Mandour R (2010) Safe biodegradation of textile azo dyes by newly isolated lactic acid bacteria and detection of plasmids associated with degradation. J Biored Biodegrd 1(3):1–6

    Google Scholar 

  • Khalid A, Kausar F, Arshad M, Mahmood T, Ahmed I (2012) Accelerated decolorization of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment. Appl Microbiol Biotechnol 96(6):1599–1606. https://doi.org/10.1007/s00253-012-3877-7

    Article  CAS  Google Scholar 

  • Khan AG, Bari A, Chaudhry TM, Qazilbash AA (1997) Phytoremediation- strategy to decontaminate heavy metal polluted soils and to conserve the biodiversity of Pakistan soils. In: Mufti SA, Woods CA, Hasan SA (eds) . Biodiversity of Pakistan Museum of Natural History, Islamabad and Florida Museum of Natural History, Gainesville

    Google Scholar 

  • Khataee AR, Dehghan G (2011) Optimization of biological treatment of a dye solution by macroalgae Cladophora sp. using response surface methodology. J Taiwan Inst Chem Eng 42(1):26–33

    Article  CAS  Google Scholar 

  • Khataee AR, Dehghan G, Ebadi A, Zarei M, Pourhassan M (2010a) Biological treatment of a dye solution by Macroalgae Chara sp.: effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour Technol 101(7):2252–2258. https://doi.org/10.1016/j.biortech.2009.11.079

    Article  CAS  Google Scholar 

  • Khataee AR, Zarei M, Pourhassan M (2010b) Bioremediation of malachite green from contaminated water by three microalgae: neural network Modeling. Clean Soil Air Water 38(1):96–103. https://doi.org/10.1002/clen.200900233

    Article  CAS  Google Scholar 

  • Kneer R, Kutchan TM, Hochberger A, Zenk MH (1992) Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch Microbiol 157:305–310

    Article  CAS  Google Scholar 

  • Krauter P, Martinelli R, William K, Martins S (1996) Removal of Cr4+ from ground water by S. cervisiae. Biodegradation 7:277–286

    Article  CAS  Google Scholar 

  • Kujan P, Votruba J, Kamenik V (1995) Substrate-dependent bioaccumulation of cadmium by growing yeast Candida utilis. Folia Microbiol 40(3):288–292

    Article  CAS  Google Scholar 

  • Kumar KV, Ramamurthi V, Sivanesan S (2006) Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae. Dyes Pigments 69:102–107

    Article  CAS  Google Scholar 

  • Kumar PS, Pavithra J, Suriya S, Ramesh M, Kumar AN (2015) Sargassum wightii, a marine alga is the source for the production of algal oil, bio-oil, and application in the dye wastewater treatment. Desalin Water Treat 55(5):1342–1358. https://doi.org/10.1080/19443994.2014.924032

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbial Rev 53(3):305–315

    Article  Google Scholar 

  • Leebana VJ, Santhanum H, Geetha K, Raj SA (2012) Biodegrdation of direct golden yellow, a textile dye by Pseudomonas putida. Desalin Water Treat 39:1–9

    Article  CAS  Google Scholar 

  • Li C, Xu Y, Jiang W, Dong X, Wang D, Liu B (2013) Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresour Technol 143:46–52

    Article  CAS  Google Scholar 

  • Lima EC, Royer B, Vaghetti JCP, Simon NM, Cunha BM, Pavan FA, Benvenutti EV, Cataluna-Veses R, Airoldi C (2008) Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution: kinetics and equilibrium study. J Haz Mat 155:536–550

    Article  CAS  Google Scholar 

  • Machado KMG, Luciana CA, Compart LCA, Morais RO, Luiz H, Rosa LH, Santos MH (2006) Biodegradation of reactive textile dyes by Basidiomycetous fungi from Brazilian ecosystems. Braz J Microbiol 37:481–487

    Article  CAS  Google Scholar 

  • Maqbool Z, Hussain S, Ahmad T et al (2016) Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environ Sci Pollut Res Int 23(11):11224–11239. https://doi.org/10.1007/s11356-016-6275-3

    Article  CAS  Google Scholar 

  • Marchenko AM, Pshinko GN, Demchenko VY, Goncharuk VV (2015) Leaching heavy metal from deposits of heavy metals with bacteria oxidizing elemental sulphur. J Water Chem Technol 37:311–316

    Article  Google Scholar 

  • Marim RA, Oliveira AC, Marquezoni RS et al (2016) Use of sugarcane molasses by Pycnoporus sanguineus for the production of laccase for dye decolorization. Genet Mol Res 15(4) Published 2016 Oct 17. https://doi.org/10.4238/gmr15048972

  • Min SW, Hasnat MA, Rahim AA, Mohamed N (2013) Optimisation of the batch reactor for the removal of cobalt ions from chloride media. Chemosphere 90(2):674–682

    Article  CAS  Google Scholar 

  • Mohan SV, Karthikeyan J (2000) Removal of Diazo dye from aqueous phase by algae Spirogyra species. Toxicol Environ Chem 74(3–4):147–154. https://doi.org/10.1080/02772240009358877

    Article  CAS  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:1–22

    Article  Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 125–194

    Chapter  Google Scholar 

  • Omar HH (2008) Algal decolorization and degradation of monoazo and diazo dyes. Pak J Biol Sci 11:1310–1316

    Article  CAS  Google Scholar 

  • Ottoni CA, Santos C, Kozakiewicz Z, Lima N (2013) White-rot fungi capable of decolourising textile dyes under alkaline conditions. Folia Microbiol (Praha) 58(3):187–193. https://doi.org/10.1007/s12223-012-0196-4

    Article  CAS  Google Scholar 

  • Poorni S, Priya M, Sharmila S (2020) Adsorption of dyes by marine algae. Plant Cell Biotechnol & Molecul Biol 20(23–24):1238–1241

    Google Scholar 

  • Presta A, Stillman MJ (1997) Incorporation of copper into the yeast Saccharomyces cerevisiae. Identification of cu(I)-metallothionein in intact yeast cells. J Inorg Biochem 66:231–240

    Article  CAS  Google Scholar 

  • Priya AK, Nagan S (2015) Bioremediation of dye effluent and metal contaminated soil: low-cost method for environmental cleanup by microbes. J Environ Sci Eng 57(2):109–119

    CAS  Google Scholar 

  • Przystas W, Zablocka-Godlewska E, Grabinska-Sota E (2015) Efficacy of fungal decolorization of a mixture of dyes belonging to different classes. Braz J Microbiol 46(2):415–424. https://doi.org/10.1590/S1517-838246246220140167

    Article  Google Scholar 

  • Przystaś W, Zabłocka-Godlewska E, Grabińska-Sota E (2018) Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports. Braz J Microbiol: [Publication of the Brazilian Society for Microbiology] 49(2):285–295. https://doi.org/10.1016/j.bjm.2017.06.010

    Article  CAS  Google Scholar 

  • Qazilbash AA (2004) Isolation and characterization of heavy metal tolerant biota from industrially polluted soils and their role in bioremediation. Biological Sci 41:210–256

    Google Scholar 

  • Ramalho PA, Cardoso MH, Cavaco-Paulo A, Ramalho MT (2004) Characterization of azo reduction activity in a novel ascomycete yeast strain. Appl Environ Microbiol 70:2279–2288

    Article  CAS  Google Scholar 

  • Ramalingam S, Saraswathy N, Shanmugapriya S, Shakthipriyadarshani S, Sadasivam S, Sanmugaprakash M (2010) Decolorization of textile dyes by Aspergillus tamari, mixed fungal culture and Peniceillium purpurogenum. J Sci Ind Res 69:151–153

    CAS  Google Scholar 

  • Ramsay LM, Gadd GM (1997) Mutants of Saccharomyces cerevisiae defective invacuolar function confirm a role for the vacuole intoxic metalion detoxification. FEMS Microbiol Lett 152(2):293–298

    Article  CAS  Google Scholar 

  • Rani B, Vivek K, Jagvijay S, Sandeep B, Priyanku T, Shivesh S, Ritu K (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45(3):1055–1063

    Article  CAS  Google Scholar 

  • Ren S, Guo J, Zeng G, Sun G (2006) Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl Microbiol Biotechnol 72(6):1316–1321. https://doi.org/10.1007/s00253-006-0418-2

    Article  CAS  Google Scholar 

  • Roy DC, Biswas SK, Saha AK, Sikdar B, Rahman M, Roy AK, Prodhan ZH, Tang SS (2018) Biodegradation of Crystal Violet dye by bacteria isolated from textile industry effluents. PeerJ 6:e5015. https://doi.org/10.7717/peerj.5015

    Article  CAS  Google Scholar 

  • Saha P, Datta S, Sanyal SK (2010) Application of natural clayey soil as adsorbent for the removal of copper from wastewater. J Environ Eng 136:1409–1417. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000289

    Article  CAS  Google Scholar 

  • Saibaba KVN, King P (2013a) Equilibrium and thermodynamic studies for dye removal using biosorption. Int J Res Eng & Technol 1(3):17–24

    Google Scholar 

  • Saibaba KVN, King P (2013b) Modelling and optimization of dye removal process using hybrid response surface methodology and genetic algorithm approach. J Fundam Renew Energy Appl 4(1). https://doi.org/10.4172/2090-4541.1000126

  • Saibaba KVN, King P, Gopinadh R, Sreelakshmi V (2011) Response surface optimization of dye removal by using Waste prawn shells. Int J Chem Sci Appl 2(3):186–193

    Google Scholar 

  • Saibaba KVN, King P, Gopinadh R, Lakshmi DKN (2012) Response surface optimization for the decolorization of crystal violet dye from aqueous solutions by waste crab shells. Int J App Environ Sci 7(2):149–154

    Google Scholar 

  • Semrany S, Favier L, Djelal H, Taha S, Amrane A (2012) Bioaugmentation: possible solution in the treatment of bio-refractory organic compounds (BioROCs). Biochem Eng J 69:75–86

    Article  CAS  Google Scholar 

  • Shahid A, Singh J, Bisht S, Teotia P, Kumar V (2013) Biodegradation of textile dyes by fungi isolated from North Indian field soil. Env Asia 6(2):51–57

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753

    Article  CAS  Google Scholar 

  • Shedbalkar U, Jadhav JP (2011) Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnol Bioproc E 16:196. https://doi.org/10.1007/s12257-010-0069-0

    Article  CAS  Google Scholar 

  • Siddique M, Mahmmod A, Sheikh M, Gafoor A, Khaliq S, Bukhai M, Yousaf K, Rehman K, Andleeb S, Naeem MM (2012) A study on the biodegradation of some reactive textile dyes by white rot fungus (Pleurotus ostreatus). World Appl Sci J 18(2):181–185

    CAS  Google Scholar 

  • Singh RP, Singh PK, Singh RL (2014) Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03. Toxicol Int 21(2):160–166. https://doi.org/10.4103/0971-6580.139797

    Article  CAS  Google Scholar 

  • Siti ZM, Nurhaslina CR, Ku HKH (2013) Removal of synthetic dyes from wastewater by using Bacteria, Lactobacillus delbruckii. Int Refereed J Eng & Sci (IRJES) 2(5):01–07

    Google Scholar 

  • Tamás MJ, Wysocki R (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951

    Article  CAS  Google Scholar 

  • Tavares MF, Avelino KV, Araújo NL et al (2020) Decolorization of azo and anthraquinone dyes by crude laccase produced by Lentinus crinitus in solid state cultivation. Braz J Microbiol 51(1):99–106. https://doi.org/10.1007/s42770-019-00189-w

    Article  CAS  Google Scholar 

  • Thorsen M, Jacobson T, Vooijs R, Navarrete C, Bliek T, Schat H, Tamás MJ (2012) Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast. Mol Microbiol 84(6):1177–1188

    Article  CAS  Google Scholar 

  • Vasudevan N, Kanimozhi R (2011) Decolourisation of azo dye, Acid Red-18 by Phanerochaete chrysosporium. J Environ Sci Eng 53(3):349–354

    CAS  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Velásquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167:713–716. https://doi.org/10.1016/j.jhazmat.2009.01.044

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002

    Article  CAS  Google Scholar 

  • Vital KR, Saibaba KVN, Beebi SK, Gopinadh R (2016) Dye removal by adsorption: a review. J Bioremed Biodegr 7(6). https://doi.org/10.4172/2155-6199.1000371

  • Wu Q, You R, Clark M, Yu Y (2014) Pb(II) removal from aqueous solution by a low-cost adsorbent dry desulfurization slag. Appl Surf Sci 314:129–137

    Article  CAS  Google Scholar 

  • Yadav KK, Gupta N, Kumar V, Singh JK (2017) Bioremediation of heavy metals from contaminated sites using potential species : a review. Indian J Environ Prot 37:65–84

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayana Saibaba KV .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

KV, N.S. (2021). Removal of Dyes From Industrial Effluents Using Bioremediation Technique. In: Aravind, J., Kamaraj, M., Prashanthi Devi, M., Rajakumar, S. (eds) Strategies and Tools for Pollutant Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-030-63575-6_9

Download citation

Publish with us

Policies and ethics

Navigation