Metallic Technetium, Corrosion, Technetium Alloys and Its Behavior in Spent Nuclear Fuel

  • Chapter
  • First Online:
Electrochemistry of Technetium

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 315 Accesses

Abstract

Electrochemical studies on the technetium as a radioactive waste component focus on several aspects related to the waste immobilization and recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulaziz R, Brown LD, Inman D et al (2016) Predominance diagrams of spent nuclear fuel materials in LiCl–KCl and NaCl–KCl molten salt eutectics. Int J Electrochem Sci 11:10417–10435

    Article  CAS  Google Scholar 

  • Abdulaziz R (2016) Electrochemical reduction of metal oxides in molten salts for nuclear reprocessing. PhD thesis, University College London, p 143

    Google Scholar 

  • Adachi T, Ohnuki M, Yoshida N et al (1990) Dissolution study of spent PWR fuel: Dissolution behavior and chemical properties of insoluble residues. J Nucl Mater 174:60–71

    Article  CAS  Google Scholar 

  • Aihara H, Arai Y, Shibata et al (2016) Characterisation og the insoluble sludge from the dissolution of irradiated fast breeder reactor fuel. Proc Chem 21:279–284

    Google Scholar 

  • Asakura T, Kim S-Y, Morita Y et al (2005) Study on electrolytic reduction of pertechnetate in nitric acid solution for electrolytic extraction of rare metals for future reprocessing. J Nucl Radiochem Sci 6(3):267–269

    Article  CAS  Google Scholar 

  • Bebko J (2011) Spectroelectrochemical investigations of pertechnetates reduction in the environment of sulfuric and nitric acid. Master thesis, University of Warsaw (in polish)

    Google Scholar 

  • Box W (1968) Electrolyte for the electrodeposition of technetium. US Patent 3 374 157

    Google Scholar 

  • Boyd GE (1959) Technetium and promethium. J Chem Edu 36(1):3–14

    Article  CAS  Google Scholar 

  • Boyd GE, Larson QV, Motta EE (1960) J Am Chem Soc 82:809–815

    Article  CAS  Google Scholar 

  • Bramman JI, Sharpe RM, Thom D, Yates G (1968) Metallic fission-product inclusions in irradiated oxide fuels. J Nucl Mater 25:201–215

    Article  Google Scholar 

  • Brewer L, Lamoreaux RH (1980) Thermochemical properties, in molybdenum: physico-chemical properties of its compounds and alloys. At Energy Rev, Spec Issue 7:1–191

    Google Scholar 

  • Burton-Pye BP, Radivojevic I, McGregor D, Francesconi LC et al (2011), photoreduction of 99Tc pertechnetate by nanometer-sized metal oxides: new strategies for formation and sequestration of low-valent technetium. J Am Chem Soc 133:18802

    Article  CAS  PubMed  Google Scholar 

  • Cartledge GH (1955) The pertechnetate ion as an inhibitor of corrosion. J Am Chem Soc 77:2658–2659

    Article  Google Scholar 

  • Cartledge GH (1971) The electrochemical behavior of technetium and iron containing technetium. J Electrochem Soc 118(11):1752–1757

    Article  CAS  Google Scholar 

  • Cartledge GH, Sympson RF (1957) The existence of a flade potential on iron inhibited by ions of the XO4− type. J Phys Chem 61(7):973–980

    Article  CAS  Google Scholar 

  • Chatterjee S, Hall GB, Johnsonet I et al (2018) Surprising formation of quasi-stable Tc(VI) in high ionic strength alkaline media. Inorg Chem Front 5:2081–2091

    Google Scholar 

  • Chotkowski M, CzerwiƄski A (2012) Electrochemical and spectroelectrochemical studies of pertechnetate electroreduction in acidic media. Electrochim Acta 76:165–173

    Article  CAS  Google Scholar 

  • Chotkowski M, CzerwiƄski A (2016) Stability of technetium in the moderate oxidation states in acidic media. Annales UMCS Sectio AA LXXI(1): 141–149

    Google Scholar 

  • Chotkowski M (2018) Redox interactions of technetium with neptunium in acid solutions. J Radioanal Nucl Chem 317:527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compton RG, Sanders GHW (1996) Electrode potentials. Oxford Scientific Publications

    Google Scholar 

  • Darby JB Jr, Norton LJ, Downey JW (1963) A survey of the binary systems of technetium with group VIII transition elements. J Less-Common Met 5:397–402

    Article  CAS  Google Scholar 

  • Denden I, Essehli R, Fattahi M (2013) Spectrophotometric study of the behaviour of pertechnetate in trifluoromethanesulfonic acid: effect of alpha irradiation on the stability of Tc(VII). J Radioanal Nucl Chem 296:149–155

    CAS  Google Scholar 

  • de Zoubov, N, Pourbaix M (1966) Technetium Chapter IV, Section 11.2. In: Pourbaix M Atlas of electrochemical equilibria in aqueous solutions, Pergamon Press, p 298

    Google Scholar 

  • Engelmann MD, Metz LA, Delmore JE (2008) Electrodeposition of technetium on platinum for thermal ionization mass spectrometry (TIMS). J Radioanal Nucl Chem 276(2):493–498

    Article  CAS  Google Scholar 

  • Ferrier M, Poineau F, Jarvinen GD et al (2013) Chemical and electrochemical behavior of metallic technetium in acidic media. J Radioanal Nucl Chem 298:1809–1817

    Article  CAS  Google Scholar 

  • Garcia-Garcia R, Ortega-Zarzosa G, RincĂłn ME et al (2014) The hydrogen evolution reaction on rhenium metallic electrodes: a selected review and new experimental evidence. Electrocatal 6(3):263–273

    Google Scholar 

  • Garcia-Garcia R, Rivera JG, Antaño-Lopez R (2016) Impedance spectra of the cathodic hydrogen evolution reaction on polycrystalline rhenium. Int J Hydrogen Energy 41:4660–4669

    Article  CAS  Google Scholar 

  • Garraway J, Wilson PD (1984) The technetium-catalysed oxidation of hydrazine by nitric acid. J Less-Common Met 97:191–203

    Article  CAS  Google Scholar 

  • German KE, Obruchnikova YA, Tumanova DN et al (2011) Technetium catalytic effect and speciation in nitric acid solutions in presence of Np(V), Th(IV), Zr(IV) and reducing nitrogen derivatives. In: German KE, Myasoedov BF, Kodina GE, Maruk AY, Troshkina ID (eds) Book of proceedings, 7th ISTR July 4-8, 2011. Russia, Moscow, pp 114–120

    Google Scholar 

  • Ghalei M, Vandenborre J, Poineau F (2018) Speciation of technetium in carbonate media under helium ions and Îł radiation. Radiochim Acta 1–9. https://doi.org/10.1515/ract-2018-2939

  • Hoshi H, Wei Y-Z, Kumagai M (2007) Study on valence of Pu, Np and Tc in nitric acid after electrolytic reduction. J Alloys Compd 444–445:663–667

    Article  CAS  Google Scholar 

  • Inazawa S, Nitta K, Okada K et al (2016) molten salt bath, deposit, and method of producing metal deposit. US Patent 9 512 530 B2

    Google Scholar 

  • Jaksic MM (2000) Volcano plots along the periodic table, their causes and consequences on electrocatalysis for hydrogen electrode reactions. J New Mat Electrochem Sys 3:167–182

    Google Scholar 

  • Kemp TJ, Thyera SAM, Wilsonb PD (1993) The Role of Intermediate Oxidation States of Technetium in Catalysis of the Oxidation of Hydrazine by oxo-anions. Part I Nitrate ions. J Chem Soc Dalton Trans 2601–2605

    Google Scholar 

  • Kleykamp H (1985a) The chemical state of the fission products in oxide fuels. J Nucl Mater 131:221–246

    Article  CAS  Google Scholar 

  • Kleykamp H (1985b) Composition and structure of fission products precipitates in irradiated oxide fuels: Correlaction with phase studies in the Mo–Ru–Rh–Pd and BaO–UO2–ZrO2–MoO2 systems. J Nucl Mater 130:426–433

    Article  CAS  Google Scholar 

  • Kolman DG, Moore DP, Jarvinen GD et al (2012) the aqueous corrosion behavior of technetium–iron alloy materials. LA-UR-12–25629. https://doi.org/10.2172/1053896

  • Koltunov VS, Marchenko VI, Nikiforov AS (1986) The role taken by technetium in the oxidation-reduction processes used in irradiated-fuel technology. At Energy 43–51

    Google Scholar 

  • Koyama S, Suzuki T, Mimura H et al (2011) Current status and future plans of Advanced ORIENT Cycle strategy. Prog Nucl Energy 53:980–987

    Google Scholar 

  • Kuznetsov VV, Volkova MA, German KE et al (2020) Electroreduction of pertechnetate ions in concentrated acetate solutions. J Electroanal Chem 869:114090. https://doi.org/10.1016/j.jelechem.2020.114090. Accessed 20 June 2020

  • LĂĄng GG, HorĂĄnyi G (2003) Some interesting aspects of the catalytic and electrocatalytic reduction of perchlorate ions. J Electroanal Chem 552:197–211

    Article  CAS  Google Scholar 

  • Lemire RJ, Fuger J, Nitsche H et al (2001) Chemical thermodynamics of neptunium and plutonium, vol 4. Elsevier, Amsterdam, pp 91–104

    Google Scholar 

  • Lukens WW, Bucher JJ, Edelstein NM et al (2001) Radiolysis of TcO4− in alkaline, nitrate solutions: reduction by NO32−. J Phys Chem A 105:9611–9615

    Article  CAS  Google Scholar 

  • Lukens WW, Bucher JJ, Edelstein NM et al (2002) Products of pertechnetate radiolysis in highly alkaline solution: structure of TcO2·xH2O. Environ Sci Technol 36:1124–1129

    Article  CAS  PubMed  Google Scholar 

  • Lukens W, Shuh D, Schroeder N et al (2004) Identification of the non-pertechnetate species in hanford waste tanks, Tc(I)-carbonyl complexes. Los Alamos Technical Report 38:229–233

    CAS  Google Scholar 

  • Magee RJ, Cardwell TJ (1974) Rhenium and Technetium in: Bard AJ (ed) Encyclopedia of electrochemistry of the elements. vol II, Marcel Dekker, pp 126–189

    Google Scholar 

  • Marchenko VI, Zhuravleva GI, Dvoeglazov KN et al (2008) Behaviors of plutonium and neptunium in nitric acid solutions containing hydrazine and technetium ions. Theor Fund Chem Eng 42(5):733–739

    Article  CAS  Google Scholar 

  • Masahira Y, Ohishi Y, Kurosaki K et al (2015) Effect of Mo content on thermal and mechanical properties of Mo–Ru–Rh–Pd alloys. J Nucl Mater 456:369–372

    Article  CAS  Google Scholar 

  • Maslennikov A, Masson M, Peretroukhine V et al (1998) Technetium electrodeposition from aqueous formate solutions: electrolysis kinetics and material balance study. Radiochim Acta 83:31–37

    Article  CAS  Google Scholar 

  • Maslennikov A (2012) Electrochemistry of actinides and selected fission products in the head end of spent nuclear fuel reprocessing. Procedia Chem 7:39–44

    Article  CAS  Google Scholar 

  • Mausolf E, Poineau F, Hartmann T et al (2011) Characterization of electrodeposited technetium on gold foil. J Electrochem Soc 158(3):E32–E35

    Article  CAS  Google Scholar 

  • McGregor D, Burton-Pye BP, Howell RC et al (2011) Synthesis, structure elucidation, and redox properties of 99Tc complexes of lacunary wells-dawson polyoxometalates: insights into molecular 99Tc-metal oxide interactions. Inorg Chem 50:1670–1681

    Article  CAS  PubMed  Google Scholar 

  • McGregor D, Burton-Pye BP, Mbomekalle IM et al (2012) 99Tc and Re incorporated into metal oxide polyoxometalates: oxidation state stability elucidated by electrochemistry and theory. Inorg Chem 51:9017–9028

    Article  CAS  PubMed  Google Scholar 

  • OECD (2012) NEA/NSC/WPFC/DOC(2012)15 Spent nuclear fuel reprocessing flowsheet. Nuclear Energy Agency. p 10

    Google Scholar 

  • Okada I (2002) Transport properties of molten salts. In: Bockris JO’M, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 34, Kluwer, pp 119–204

    Google Scholar 

  • Ozawa M, Shinoda Y, Sano Y (2002) The separationof fission products rare elements toward bridging the nuclear and soft energy systems. Prog Nucl Energy 40(3–4):527–538

    Article  CAS  Google Scholar 

  • Ozawa M, Ishida M, Sano Y (2003) Strategic separation of technetium and rare metal fission-products in spent nuclear fuel e solvent extraction behavior and partitioning by catalytic electrolytic extraction. Radiochem (Radiokhim) 45(3):225–232

    Article  CAS  Google Scholar 

  • Ozawa M, Suzuki T, Koyama S et al (2005) Separation of rare metal fission products in radiactive wastes in new direction of their utilization. Prog Nucl Energy 47(1–4):462–471

    Article  CAS  Google Scholar 

  • Ozawa M, Suzuki T, Koyama S (2008) new back-end cycle strategy for enhancing separation, transmutation and utilization of materials (Adv.-ORIENT cycle). Prog Nucl Energy 50:476–482

    Article  CAS  Google Scholar 

  • Peretrukhin VF, Silin VI, Kareta AV et al (1998) Purification of alkaline solutions and wastes from actinides and technetium by coprecipitation with some carriers using the method of appearing reagents: Final Report Final report of Institute of Physical Chemistry of Russian Academy of Sciences Contract with DOE, PNNL 1998

    Google Scholar 

  • Perterukhin VF, Moisy F, Maslennikov AG (2008) Physicochemical behavior of uranium and technetium in some new stages of the nuclear fuel cycle. Russ J Gen Chem 78(5):1031–1046

    Article  CAS  Google Scholar 

  • Pikaev AK, Gogolev AV, Kryutchkov SV et al (1996) Radiolysis of Actinides and Technetium in Alkaline Media. WHC-EP-0901, Westinghouse Hanford Corporation

    Google Scholar 

  • Poineau F, Weck PF, Burton-Pye BP et al (2013) Reactivity of HTcO4 with methanol in sulfuric acid: Tc-sulfate complexes revealed by XAFS spectroscopy and first principles calculations. Dalton Trans 42:4348–4352

    Article  CAS  PubMed  Google Scholar 

  • Poineau F, Gray K, Ebert W (2014) Electrochemical corrosion studies for modeling metallic waste form release rates. Project No. 12–4026. Final report. Nuclear Energy University Program USA

    Google Scholar 

  • Poineau F, Koury DJ, Bertoia J et al (2016) Electrochemical studies of technetium-ruthenium alloys in HNO3: implications for the behavior of technetium waste forms1. Radiochemistry 59(1):41–47

    Article  CAS  Google Scholar 

  • Rard JA, Rand MH, Anderegg G et al (1999) Chemical thermodynamics of technetium, vol 3. Elsevier

    Google Scholar 

  • Rotmanov KV, Maslennikov AG, Zakharova LV, Goncharenko YuD, Pertetrukhin VF (2015) Anodic dissolution oof Tc metal in HNO3 solutions. Radiochemistry 57(1):26–30

    Article  CAS  Google Scholar 

  • Rudenko A, Isakov A, Apisarov A et al (2019) Liquidus temperature and electrical conductivity of molten eutectic CsCl–NaCl–KCl containing ReCl4. J Chem Eng Data 64:567–573

    Article  CAS  Google Scholar 

  • Salakhova E (2014) The electrochemical deposition of rhenium chalcogenides from different electrolytes. J Chem Eng Chem Res 1(3):185–198

    CAS  Google Scholar 

  • Sekine T, Narushima H, Suzuki et al (2004) Technetium(IV) oxide colloids produced by radiolytic reactions in aqueous pertechnetate solution. Colloids Surf. A Physicochem Eng Asp 249:105–109

    Google Scholar 

  • Skriver HL, Rosengaard NM (1992) Surface energy and work function of elemental metals. Phys Rev 46(11):7157–7168

    Article  CAS  Google Scholar 

  • Sympson RF, Cartledge GH (1956) The mechanism of the inhibition of corrosion by the pertechnetate ion. IV. Comparison with other \( {\text{XO}}_{4}^{{{\text{n}} - }} \) inhibitors. J Phys Chem 60(8):1037–1043

    Google Scholar 

  • SzabĂł S, Bakos I (2000) Electroreduction of rhenium from sulfuric acid solutions of perrhenic acid. J Electroanal Chem 492(2):103–111

    Article  Google Scholar 

  • Taylor CD (2011) Surface segregation and adsorption effects of iron–technetium alloys from first-principles. J Nucl Mater 408:183–187

    Article  CAS  Google Scholar 

  • Trasatti S (1972a) Discussion of the electrochemical behavior of technetium and iron containing technetium. Cartledge GH (pp 1752–1758, vol 118, no 11)] Discussion Section. J Electrochem Soc 119(12):1696–1697

    Google Scholar 

  • Trasatti S (1972b) Work function, electronegativity, and electrochemical behavior of metals. III Electrolytic hydrogen evolution in acid soultions. J Electroanal Chem Interfacial Electrochem 39:163–184

    Article  CAS  Google Scholar 

  • Trasatti S, Petri OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63(5):711–734

    Article  CAS  Google Scholar 

  • Volkovich VA, Vasin BD, Griffiths TR (2010) Electrochemical and spectroscopic properties of technetium in fused alkali metal chlorides. ECS Trans 33(7):381–390

    Article  CAS  Google Scholar 

  • Voltz RE, Holt ML (1967) Electrodeposition of Tc99 from aqueous solution. J Electrochem Soc 114(2):128–131

    Article  CAS  Google Scholar 

  • Westphal BR, Frank BR, McCartin WM et al (2015) Characterization of irradiated metal waste from the pyrometallurgical treatment of used EBR-II fuel. Metall Mater Trans A 46A:83–92

    Article  CAS  Google Scholar 

  • Wotteen CB (1977) Method for prevention of fouling by marine growth and corrosion utilizing technetium-99. US Patent 4 017 370

    Google Scholar 

  • Yamanaka S, Kurosaki K (2003) Thermophysical properties of Mo–Ru–Rh–Pd alloys. J Alloys Compd 353:269273

    Article  CAS  Google Scholar 

  • Zakharov EN, Bagaev SP, Kudryavtsev VN et al (1991) On the possibility of a hydride phase formation under Tc-99 electrodeposition. Zashch Met 27(6):1024–1026

    CAS  Google Scholar 

  • Zhou X, Ye G, Zhang H et al (2014) Chemical behavior of neptunium in the presence of technetium in nitric acid media. Radiochim Acta 102(1–2):111–116

    CAS  Google Scholar 

  • Zhuz Q, Wang S-Q (2016) Trends and regularities for halogen adsorption on various metal surfaces. J Electrochem Soc 163(9):H796–H808

    Article  CAS  Google Scholar 

  • Zilberman BY, Pokhitonova YA, Kirshin MY et al (2007) Prospects for development of a process for recovering technetium from spent fuel of nuclear power plants. Radiochem 49(2):156–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Chotkowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chotkowski, M., CzerwiƄski, A. (2021). Metallic Technetium, Corrosion, Technetium Alloys and Its Behavior in Spent Nuclear Fuel. In: Electrochemistry of Technetium. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-62863-5_5

Download citation

Publish with us

Policies and ethics

Navigation