Quality Control and Evaluation Criteria for Enantiomer-Selective Separation Methods in Environmental Sciences

  • Chapter
  • First Online:
Chiral Environmental Pollutants

Abstract

For the quantification of trace amounts of pollutants, complex validation protocols for method validation and quality control (QC) are required today in order to provide reliable results suitable for further statistical treatment in national and international surveys and pollutant monitoring programmes. National and international protocols today are in place to ensure the expected data quality in environmental pollutant monitoring and research. Due to these internationally accepted measures, the unequivocal identification of the respective compounds is expected to be confirmed and documented in scientific publications and official reports (Asmund and Cleemann 2000; Viswanathan and Salmon 2000; Asmund et al. 2004; Xu et al. 2013). These QC criteria need also to be documented in comprehensive accreditation protocols and are today a mandatory part of national and international pollutant monitoring programmes. Major QC parameters like instrument response, linear range, relative compound-specific recovery rates, non-linear responses, the limit of detection (LOD), method detection limit (MDL), limit of quantification (upper and lower LOQ) and contamination control (blank values), etc., are an integrated part of the quantification procedure together with the instrument-specific identification parameters (i.e. m/z, retention time windows, etc.). Usually, the methods are associated with compound-specific overall uncertainties which in turn can be used for further statistical assessments and data comparison (Schofield et al. 2001). For more in-depth information on method validation and quality control in environmental analytical chemistry, we refer to the following books (Kateman and Pijpers 1981; de Bievre and Günzler 2005; Majcen and Taylor 2010; Matsuda 2012), a selection of comprehensive reviews (van Zoonen et al. 1998; Indrayanto 2018; Sajnog et al. 2018) and the updated web-page of EuraChem, the European network of organisations, aiming at establishing a system for the international traceability of chemical measurements and the promotion of good quality practices. (retrieved 10.05.2020: https://www.eurachem.org/index.php/publications/mnu-rdlst/130-rdl-validation=).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja S (1997) Chiral separations: applications and technology. American Chemical Society, Washington, DC

    Google Scholar 

  • Ahuja S (2000) Chiral separations by chromatography. Oxford University Press; American Chemical Society, Oxford, England, Washington, DC

    Google Scholar 

  • Ali I, Aboul-Enein HY (2004) Chiral pollutants: distribution, toxicity, and analysis by chromatography and capillary electrophoresis. West Sussex, Eng.; J. Wiley, Chichester; Hoboken, NJ

    Google Scholar 

  • Asmund G, Cleemann M (2000) Analytical methods, quality assurance and quality control used in the Greenland AMAP programme. Sci Total Environ 245(1–3):203–219

    Article  CAS  Google Scholar 

  • Asmund G, Vorkamp K, Backus S, Comba M (2004) An update on analytical methods, quality assurance and quality control used in the Greenland AMAP programme: 1999-2002. Sci Total Environ 331(1–3):233–245

    Article  CAS  Google Scholar 

  • Berthod A (2010) Chiral recognition in separation methods: mechanisms and applications. Springer, Heidelberg; New York

    Google Scholar 

  • Chan CC (2004) Analytical method validation and instrument performance verification. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Chiu CC, Keeling CI, Bohlmann J (2017) Toxicity of pine monoterpenes to mountain pine beetle. Sci Rep 7(1):8858

    Article  Google Scholar 

  • de Bievre P, Günzler H (2005) Validation in chremical measurement. Springer, Heidelberg

    Book  Google Scholar 

  • De Geus HJ, Wester P, de Boer J, Brinkmann UAT (2000) Enantiomer fractions instead of enantiomer ratios. Chemosphere 41(5):725–727. https://doi.org/10.1016/S0045-6535(99)00431-2

    Article  Google Scholar 

  • Dousa M, Reitmajer J, Lustig P, Stefko M (2016) Effect of chromatographic conditions on Enantioseparation of Bedaquiline using polysaccharide-based chiral stationary phases in RP-HPLC. J Chromatogr Sci 54(9):1501–1507

    Article  CAS  Google Scholar 

  • Ermer J, Vogel M (2000) Applications of hyphenated LC-MS techniques in pharmaceutical analysis. Biomed Chromatogr 14(6):373–383

    Article  CAS  Google Scholar 

  • Gubitz G, Schmid MG (2004) Chiral separation principles: an introduction. Methods Mol Biol 243:1–28

    Google Scholar 

  • Gübitz G, Schmid MG (2004) Chiral separations: methods and protocols. Humana Press, Totowa, NJ

    Google Scholar 

  • Harner T, Wiberg K, Norstrom R (2000) Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environ Sci Technol 34(1):218–220. https://doi.org/10.1021/es9906958

    Article  CAS  Google Scholar 

  • Harris DC (2010) Quantitative chemical analysis. W.H. Freeman and Co., New York

    Google Scholar 

  • He Z, Peng Y, Wang L, Luo M, Liu X (2015) Unequivocal enantiomeric identification and analysis of 10 chiral pesticides in fruit and vegetables by QuEChERS method combined with liquid chromatography-quadruple/linear ion trap mass spectrometry determination. Chirality 27(12):958–964

    Article  CAS  Google Scholar 

  • Hegeman WJ, Laane RW (2002) Enantiomeric enrichment of chiral pesticides in the environment. Rev Environ Contam Toxicol 173:85–116

    Google Scholar 

  • Hühnerfuss H (2000) Chromatographic enantiomer separation of chiral xenobiotics and their metabolites--a versatile tool for process studies in marine and terrestrial ecosystems. Chemosphere 40(9–11):913–919

    Article  Google Scholar 

  • Hühnerfuss H, Shah MA (2009) Enantioselective chromatograph – a powerful tool for the discrimination of biotic and abiotic processes of chiral environmental pollutants. J. Chromatogr. A 1216/3:481–502

    Article  Google Scholar 

  • Indrayanto G (2018) Validation of chromatographic methods of analysis: application for drugs that derived from herbs. Profiles Drug Subst Excip Relat Methodol 43:359–392

    Article  CAS  Google Scholar 

  • Jaus A, Oehme M (2001) Consequences of variable purity of heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin determined by liquid chromatography-mass spectrometry on the enantioselective separation of polychlorinated compounds. J Chromatogr A 905(1–2):59–67

    Article  CAS  Google Scholar 

  • Kateman G, Pijpers FW (1981) Quality control in analytical chemistry. Wiley, New York

    Google Scholar 

  • Krstulović AM (1989) Chiral separations by HPLC. E. Horwood; Halsted Press, Chichester; New York

    Google Scholar 

  • Majcen N, Taylor P (2010) Practical examples on traceability, measurement uncertainty and validation in chemistry. Bruxelles, JRC European Commission

    Google Scholar 

  • Matsuda R (2012) Quality assurance of the chemical analysis measurements of foods. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku (130):21–30

    Google Scholar 

  • Meyer VR (1989) Chromatographic enantiomer separation. The phenomenon of chirality. Pharm Unserer Zeit 18(5):140–145

    Article  CAS  Google Scholar 

  • Miller DR, Crowe CM, Asaro C, Debarr GL (2003) Dose and enantiospecific responses of white pine cone beetles, Conophthorus coniperda, to alpha-Pinene in an eastern white pine seed orchard. J Chem Ecol 29(2):437–451

    Article  CAS  Google Scholar 

  • Nageswara Rao R, Narasa Raju A, Nagaraju D (2006) Development and validation of a liquid chromatographic method for determination of enantiomeric purity of citalopram in bulk drugs and pharmaceuticals. J Pharm Biomed Anal 41(1):280–285

    Article  CAS  Google Scholar 

  • Sajnog A, Hanc A, Baralkiewicz D (2018) Metrological approach to quantitative analysis of clinical samples by LA-ICP-MS: a critical review of recent studies. Talanta 182:92–110

    Article  CAS  Google Scholar 

  • Sanganyado E, Lu Z, Fu Q, Schlenk D, Gan J (2017) Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Res 124:527–542

    Article  CAS  Google Scholar 

  • Schofield JA, Miller K, Blume L (2001) Quantifying uncertainty: calculating interval estimates using quality control results. Qual Assur 9(3–4):229–237

    CAS  Google Scholar 

  • Schurig V (1984) Gas chromatographic separation of enantiomers on optically active metal-complex-free stationary phases. New analytical methods. Angewandte Chemie-International Edition in English 23(10):747–765

    Article  Google Scholar 

  • Szepesi G, Gazdag M (1988) Enantiomeric separations and their application in pharmaceutical analysis using chiral eluents. J Pharm Biomed Anal 6(6–8):623–639

    Article  CAS  Google Scholar 

  • Trukhin A, Kruchkov F, Hansen LK, Kallenborn R, Kiprianova A, Nikiforov V (2007) Toxaphene chemistry: separation and characterisation of selected enantiomers of the Polychloropinene mixtures. Chemosphere 67(9):1695–1700

    Article  CAS  Google Scholar 

  • Tuzimski T, Sherma J (2015) High performance liquid chromatography in pesticide residue analysis. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Ulrich EM, Helsel DR, Foreman WT (2003) Complications with using ratios for environmental data: comparing enantiomeric ratios (ERs) and enantiomer fractions (EFs). Chemosphere 53(5):531–538

    Article  CAS  Google Scholar 

  • van Zoonen P, van’t Klooster HA, Hoogebrugge R, Gort SM, van de Wiel HJ (1998) Validation of analytical methods and laboratory procedures for chemical measurements. Arh Hig Toksikol 49:355–370

    Google Scholar 

  • Vetter W, Schurig V (1997) Enantioselective determination of chiral organochlorine compounds in biota by gas chromatography on modified cyclodextrins. J Chromatogr A 774(1–2):143–175

    Article  CAS  Google Scholar 

  • Viswanathan HN, Salmon JW (2000) Accrediting organizations and quality improvement. Am J Manag Care 6(10):1117–1130

    CAS  Google Scholar 

  • Ward TJ (2000) Chiral separations. Anal Chem 72(18):4521–4528

    Article  CAS  Google Scholar 

  • Xu W, Wang X, Cai Z (2013) Analytical chemistry of the persistent organic pollutants identified in the Stockholm convention: a review. Anal Chim Acta 790:1–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kallenborn, R., Hühnerfuss, H., Aboul-Enein, H.Y., Ali, I. (2021). Quality Control and Evaluation Criteria for Enantiomer-Selective Separation Methods in Environmental Sciences. In: Chiral Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-62456-9_7

Download citation

Publish with us

Policies and ethics

Navigation