Explore Intrinsic Geometry of Sleep Dynamics and Predict Sleep Stage by Unsupervised Learning Techniques

  • Chapter
  • First Online:
Harmonic Analysis and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 168))

  • 1001 Accesses

Abstract

We propose a novel unsupervised approach for sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools. Specifically, we apply diffusion-based algorithms, diffusion map (DM), and alternating diffusion (AD) algorithms, to reconstruct the intrinsic geometry of sleep dynamics by reorganizing the spectral information of an electroencephalogram (EEG) extracted from a nonlinear-type time frequency analysis tool, the synchrosqueezing transform (SST). The visualization is achieved by the nonlinear dimension reduction properties of DM and AD. Moreover, the reconstructed nonlinear geometric structure of the sleep dynamics allows us to achieve the automatic annotation purpose. The hidden Markov model is trained to predict the sleep stage. The prediction performance is validated on a publicly available benchmark database, Physionet Sleep-EDF [extended] SC and ST, with the leave-one-subject-out cross-validation. The overall accuracy and macro F1 achieve 82.57% and 76% in Sleep-EDF SC and 77.01% and 71.53% in Sleep-EDF ST, which is compatible with the state-of-the-art results by supervised learning-based algorithms. The results suggest the potential of the proposed algorithm for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    According to the noise analysis in [38], when the signal-to-noise ratio is small, it is beneficial to set the diagonal terms of the affinity matrix to 0; that is, set W ii = 0.

  2. 2.

    Note that ϕ l is a n-dim vector while f l is a smooth function defined on M. To properly state the convergence, we need to convert ϕ l into a continuous function defined on M. Also, when μ l has a non-trivial multiplicity, the convergence should be stated using the eigenprojection operator. We refer these technical details to [31].

  3. 3.

    Its multiway clustering is supported by the recently developed theory for the multiway spectral clustering algorithm [51].

References

  1. A. Rechtschaffen, A. Kales, A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects (Public Health Service, US Government Printing Office, Washington, 1968)

    Google Scholar 

  2. C. Iber, S. Ancoli-Isreal, A. Chesson, S. Quan, The AASM Manual for Scoring of Sleep and Associated Events-Rules: Terminology and Technical Specification (American Academy of Sleep Medicine, 2007)

    Google Scholar 

  3. C.B. Saper, The neurobiology of sleep. Continuum 19(1), 19–31 (2013)

    Google Scholar 

  4. T. Kanda, N. Tsu**o, E. Kuramoto, Y. Koyama, E.A. Susaki, S. Chikahisa, H. Funato, Sleep as a biological problem: an overview of frontiers in sleep research. J. Physiol. Sci. 66(1), 1–13 (2016)

    Article  Google Scholar 

  5. A. Karni, D. Tanne, B.S. Rubenstein, J.J. Askenasy, D. Sagi, Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265(5172), 679–682 (1994)

    Article  Google Scholar 

  6. F. Roche Campo, X. Drouot, A.W. Thille, F. Galia, B. Cabello, M.-P. D’Ortho, L. Brochard, Poor sleep quality is associated with late noninvasive ventilation failure in patients with acute hypercapnic respiratory failure. Crit. Care Med. 38(2), 477–485 (2010)

    Article  Google Scholar 

  7. J.-E. Kang, M.M. Lim, R.J. Bateman, J.J. Lee, L.P. Smyth, J.R. Cirrito, N. Fujiki, S. Nishino, D.M. Holtzman, Amyloid-b Dynamics are regulated by Orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009)

    Article  Google Scholar 

  8. D. Leger, V. Bayon, J. Laaban, P. Philip, Impact of sleep apnea on economics. Sleep Med. Rev. 16(5), 455–462 (2012)

    Article  Google Scholar 

  9. I.G. Campbell, Eeg recording and analysis for sleep research. Curr. Protocols Neurosci. 49(1), 10–2 (2009)

    Article  Google Scholar 

  10. I. Daubechies, J. Lu, H.-T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30, 243–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. H.-T. Wu, Adaptive Analysis of Complex Data Sets. Ph.D. thesis, Princeton University (2011)

    Google Scholar 

  12. B. Ricaud, B. Torresani, A survey of uncertainty principles and some signal processing applications. Adv. Comput. Math. 40(3), 629–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Singer, R.R. Coifman, Non-linear independent component analysis with diffusion maps. Appl. Comput. Harmon. Anal. 25(2), 226–239 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Talmon, R. Coifman, Empirical intrinsic geometry for nonlinear modeling and time series filtering. Proc. Nat. Acad. Sci. 110(31), 12535–12540 (2013)

    Article  Google Scholar 

  15. R.R. Coifman, S. Lafon, Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. R.R. Lederman, R. Talmon, Learning the geometry of common latent variables using alternating-diffusion. Appl. Comput. Harmon. Anal. 44(3), 509–536 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. I.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2001), pp. 269–274

    Google Scholar 

  18. B.W. Rotenberg, C.F. George, K.M. Sullivan, E. Wong, Wait times for sleep apnea care in Ontario: a multidisciplinary assessment. Can. Respir. J. 17(4), 170–174 (2010)

    Article  Google Scholar 

  19. R.G. Norman, I. Pal, C. Stewart, J.A. Walsleben, D.M. Rapoport, Interobserver agreement among sleep scorers from different centers in a large dataset. Sleep 23(7), 901–908 (2000)

    Article  Google Scholar 

  20. A.M. Fraser, Hidden Markov Models and Dynamical Systems (SIAM, 2008)

    Google Scholar 

  21. A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, R. Mark, J. Mietus, G. Moody, C.-K. Peng, H. Stanley, Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  22. A. Berrian, N. Saito, Adaptive synchrosqueezing based on a quilted short-time Fourier transform. Int. Soc. Opt. Photon. (SPIE) 10394, 1039420 (2017)

    Google Scholar 

  23. Y.-C. Chen, M.-Y. Cheng, H.-T. Wu, Nonparametric and adaptive modeling of dynamic seasonality and trend with heteroscedastic and dependent errors. J. R. Stat. Soc. B 76(3), 651–682 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. O. Katz, R. Talmon, Y.-L. Lo, H.-T. Wu, Diffusion-based nonlinear filtering for multimodal data fusion with application to sleep stage assessment. Inform. Fusion 45, 346–360 (2019)

    Article  Google Scholar 

  25. R. Talmon, R.R. Coifman, Empirical intrinsic geometry for nonlinear modeling and time series filtering. Proc. Natl. Acad. Sci. U. S. A. 110(31), 12535–12540 (2013)

    Article  Google Scholar 

  26. J. Malik, C. Shen, N. Wu, H.-T. Wu, Connecting dots – from covariance to geodesics, empirical intrinsic geometry, and locally linear embedding. Pure Appl. Anal. accepted for publication

    Google Scholar 

  27. P. Bérard, G. Besson, S. Gallot, Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4, 373–398 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Belkin, P. Niyogi, Towards a theoretical foundation for Laplacian-based manifold methods, in Proceedings of the 18th Conference on Learning Theory (COLT) (2005), pp. 486–500

    Google Scholar 

  29. M. Hein, J. Audibert, U. von Luxburg, From graphs to manifolds – weak and strong pointwise consistency of graph Laplacians, in COLT (2005), pp. 470–485

    Google Scholar 

  30. A. Singer, From graph to manifold Laplacian: the convergence rate. Appl. Comput. Harmon. Anal. 21(1), 128–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Singer, H.-T. Wu, Spectral convergence of the connection Laplacian from random samples. Inform. Inference: J. IMA 6(1), 58–123 (2017)

    MathSciNet  MATH  Google Scholar 

  32. N.G. Trillos, M. Gerlach, M. Hein, D. Slepcev, Error estimates for spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace–Beltrami operator. Found. Comput. Math. 20(4), 827–887 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. X. Wang, Spectral Convergence Rate of Graph Laplacian, Ar**v:1510.08110 in (2015)

    Google Scholar 

  34. E. Giné, V. Koltchinskii, Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample results, in IMS Lecture Notes, vol. 51, ed. by A. Bonato, J. Janssen. Monograph Series (The Institute of Mathematical Statistics, 2006), pp. 238–259

    Google Scholar 

  35. P.W. Jones, M. Maggioni, R. Schul, Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels. Proc. Natl. Acad. Sci. U. S. A. 105(6), 1803–1808 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Bates, The embedding dimension of Laplacian eigenfunction maps. Appl. Comput. Harmon. Anal. 37(3), 516–530 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.W. Portegies, Embeddings of Riemannian manifolds with heat kernels and eigenfunctions. Commun. Pure Appl. Math. 69(3), 478–518 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. N. El Karoui, H.-T. Wu, Connection graph Laplacian methods can be made robust to noise. Ann. Stat. 44(1), 346–372 (2016)

    Article  MATH  Google Scholar 

  39. I. Gel’fand, N.Y. Vilenkin, Generalized Function Theory, vol. 4 (Academic Press, 1964)

    Google Scholar 

  40. P. Bérard, Spectral Geometry: Direct and Inverse Problems (Springer, 1986)

    Google Scholar 

  41. A. Singer, H.-T. Wu, Vector diffusion maps and the connection Laplacian. Commun. Pure Appl. Math. 65(8), 1067–1144 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. N. El Karoui, On information plus noise kernel random matrices. Ann. Stat. 38(5), 3191–3216 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Talmon, H.-T. Wu, Discovering a latent common manifold with alternating diffusion for multimodal sensor data analysis. Appl. Comput. Harmon. Anal. In press (2018)

    Google Scholar 

  44. O. Lindenbaum, A. Yeredor, M. Salhov, A. Averbuch, Multi-View diffusion maps. Inf fusion. 55, 127–149 (2020)

    Article  Google Scholar 

  45. W. Hardle, Canonical Correlation Analysis (Springer, Berlin/Heidelberg, 2007), pp. 321–330

    Google Scholar 

  46. D. Lahat, T. Adali, C. Jutten, Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015)

    Article  Google Scholar 

  47. N.F. Marshall, M.J. Hirn, Time coupled diffusion maps. Appl. Comput. Harmon. Anal. 45(3), 709–728 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Michaeli, W. Wang, K. Livescu, Nonparametric canonical correlation analysis, in International Conference on Machine Learning (2016), pp. 1967–1976

    Google Scholar 

  49. T. Shnitzer, M. Ben-Chen, L. Guibas, R. Talmon, H.-T. Wu, Recovering hidden components in multimodal data with composite diffusion operators. SIAM Journal on Mathematics of Data Science 1(3), 588–616 (2019)

    Article  MathSciNet  Google Scholar 

  50. F. Chung, Spectral Graph Theory (American Mathematical Society, 1996)

    Google Scholar 

  51. J.R. Lee, S.O. Gharan, L. Trevisan, Multiway spectral partitioning and higher-order Cheeger inequalities. J. ACM 61(6), 37:1–37:30 (2014)

    Google Scholar 

  52. A. Buzo, A. Gray, R. Gray, J. Markel, Speech coding based upon vector quantization. IEEE Trans. Acoust. Speech Signal Process. 28(5), 562–574 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  53. M.V. Vitiello, L.H. Larsen, K.E. Moe, Age-related sleep change. J. Psychosom. Res. 56(5), 503–510 (2004)

    Article  Google Scholar 

  54. M. Boselli, L. Parrino, A. Smerieri, M.G. Terzano, Effect of age on EEG arousals in normal sleep. Sleep 21(4), 361–367 (1998)

    Google Scholar 

  55. E. Van Cauter, R. Leproult, L. Plat, Age-related changes in slow wave sleep and rem sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 284(7), 861–868 (2000)

    Article  Google Scholar 

  56. A. Supratak, H. Dong, C. Wu, Y. Guo, DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans. Neural. Syst. Rehabil. Eng. 25, 1998–2008 (2017)

    Article  Google Scholar 

  57. O. Tsinalis, P.M. Matthews, Y. Guo, Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann. Biomed. Eng. 44(5), 1587–1597 (2016)

    Article  Google Scholar 

  58. O. Tsinalis, P.M. Matthews, Y. Guo, S. Zafeiriou, Automatic sleep stage scoring with single-channel EEG using convolutional neural networks, ar**v:1610.01683 in (2016)

    Google Scholar 

  59. J. Malik, N. Reed, C.-L. Wang, H.-T. Wu, Single-lead f-wave extraction using diffusion geometry. Physiol. Meas. 38, 1310–1334 (2017)

    Article  Google Scholar 

  60. S. Alagapan, H.W. Shin, F. Frohlich, H.-T. Wu, Diffusion geometry approach to efficiently remove electrical stimulation artifacts in intracranial electroencephalography. J. Neural Eng. (2019). https://doi.org/10.1088/1741-2552/aaf2ba

  61. A. Borbély, P. Mattmann, M. Loepfe, I. Strauch, D. Lehmann, Effect of benzodiazepine hypnotics on all-night sleep EEG spectra. Hum. Neurobiol. 4(3), 189–194 (1985)

    Google Scholar 

  62. M. Bonnet, D. Carley et al., EEG arousals: Scoring rules and examples. A preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep 15(2), 173–184 (1992)

    Google Scholar 

  63. P. Halasz, M. Terzano, L. Parrino, R. Bodizs, The nature of arousal in sleep. J. Sleep Res. 13, 1–23 (2004)

    Article  Google Scholar 

  64. A. Vilamala, K.H. Madsen, L.K. Hansen, Deep convolutional neural networks for interpretable analysis of EEG sleep stage scoring, in 2017 IEEE International Workshop on Machine Learning for Signal Processing (2017)

    Google Scholar 

  65. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  66. H.-T. Wu, J.-C. Wu, P.-C. Huang, T.-Y. Lin, T.-Y. Wang, Y.-H. Huang, Y.-L. Lo, Phenotype-based and self-learning inter-individual sleep apnea screening with a level IV-like monitoring system. Front. Physiol. 9, 723 (2018)

    Article  Google Scholar 

  67. S.R. Thompson, U. Ackermann, R.L. Horner, Sleep as a teaching tool for integrating respiratory physiology and motor control. Adv. Physiol. Educ. 25(2), 29–44 (2001)

    Article  Google Scholar 

  68. S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C.M. Hill, P.R. White, Signal processing techniques applied to human sleep EEG signals – a review. Biomed. Signal Process. Control 10, 21–33 (2014)

    Article  Google Scholar 

  69. S. Mallat, Group invariant scattering. Commun. Pure Appl. Math. 65(10), 1331–1398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hau-Tieng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, GR., Lo, YL., Sheu, YC., Wu, HT. (2021). Explore Intrinsic Geometry of Sleep Dynamics and Predict Sleep Stage by Unsupervised Learning Techniques. In: Rassias, M.T. (eds) Harmonic Analysis and Applications. Springer Optimization and Its Applications, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-030-61887-2_11

Download citation

Publish with us

Policies and ethics

Navigation