An Unsupervised Approach for 3D Face Reconstruction from a Single Depth Image

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

  • 2100 Accesses

Abstract

In this paper, we propose a convolutional encoder network to learn a map** function from a noisy depth image to a 3D expressive facial model. We formulate the task as an embedding problem and train the network in an unsupervised manner by exploiting the consistent fitting of the 3D mesh and the depth image. We use the 3DMM-based representation and embed depth images to code vectors concerning facial identities, expressions, and poses. Without semantic textural cues from RGB images, we exploit geometric and contextual constraints in both the depth image and the 3D surface for reliable map**. We combine the multi-level filtered point cloud pyramid and semantic adaptive weighting for fitting. The proposed system enables the 3D expressive face completion and reconstruction in poor illuminations by leveraging a single noisy depth image. The system realizes a full correspondence between the depth image and the 3D statistical deformable mesh, facilitating landmark location and feature segmentation of depth images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: IEEE CVPR, pp. 1–8 (2007)

    Google Scholar 

  2. Baltrušaitis, T., Robinson, P., Morency, L.P.: 3D constrained local model for rigid and non-rigid facial tracking. In: IEEE CVPR, pp. 2610–2617 (2012)

    Google Scholar 

  3. Bas, A., Huber, P., Smith, W.A., Awais, M., Kittler, J.: 3D morphable models as spatial transformer networks. In: ICCV Workshop on Geometry Meets Deep Learning, pp. 904–912 (2017)

    Google Scholar 

  4. Blanz, V., Basso, C., Poggio, T., Vetter, T.: Reanimating faces in images and video. Comput. Graph. Forum 22, 641–650 (2003)

    Article  Google Scholar 

  5. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH 1999, pp. 187–194 (1999)

    Google Scholar 

  6. Borghi, G., Venturelli, M., Vezzani, R., Cucchiara, R.: Poseidon: face-from-depth for driver pose estimation. In: IEEE CVPR, pp. 5494–5503 (2017)

    Google Scholar 

  7. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: IEEE ICCV, pp. 1021–1030 (2017)

    Google Scholar 

  8. Cao, C., Weng, Y., Zhou, S., Tong, Y., Zhou, K.: FaceWarehouse: a 3D facial expression database for visual computing. IEEE Trans. VCG 20(3), 413–425 (2014)

    Google Scholar 

  9. Chang, F.J., Tran, A.T., Hassner, T., Masi, I., Nevatia, R., Medioni, G.: ExpNet: landmark-free, deep, 3D facial expressions. In: IEEE FG 2018, pp. 122–129 (2018)

    Google Scholar 

  10. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set. In: IEEE CVPR Workshops (2019)

    Google Scholar 

  11. Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random forests for real time 3D face analysis. Int. J. Comput. Vis. 101(3), 437–458 (2013). https://doi.org/10.1007/s11263-012-0549-0

    Article  Google Scholar 

  12. Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random regression forests. In: CVPR, pp. 617–624 (2011)

    Google Scholar 

  13. Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 557–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_33

    Chapter  Google Scholar 

  14. Ghiass, R.S., Arandjelović, O., Laurendeau, D.: Highly accurate and fully automatic head pose estimation from a low quality consumer-level RGB-D sensor. In: Proceedings of the 2nd Workshop on Computational Models of Social Interactions: Human-Computer-Media Communication, pp. 25–34 (2015)

    Google Scholar 

  15. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: 3D-CODED: 3D correspondences by deep deformation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 235–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_15

    Chapter  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  17. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NIPS, pp. 2017–2025 (2015)

    Google Scholar 

  18. **, X., Tan, X.: Face alignment in-the-wild: a survey. Comput. Vis. Image Underst. 162, 1–22 (2017)

    Article  Google Scholar 

  19. Kundu, A., Li, Y., Rehg, J.M.: 3D-RCNN: instance-level 3D object reconstruction via render-and-compare. In: IEEE CVPR, pp. 3559–3568 (2018)

    Google Scholar 

  20. Li, S., Ngan, K.N., Paramesran, R., Sheng, L.: Real-time head pose tracking with online face template reconstruction. IEEE Trans. PAMI 38(9), 1922–1928 (2016)

    Article  Google Scholar 

  21. Lu, S., Cai, J., Cham, T.J., Pavlovic, V., Ngan, K.N.: A generative model for depth-based robust 3D facial pose tracking. In: IEEE CVPR (2017)

    Google Scholar 

  22. Martin, M., Camp, F.V.D., Stiefelhagen, R.: Real time head model creation and head pose estimation on consumer depth cameras. In: 3DV (2015)

    Google Scholar 

  23. Meyer, G.P., Gupta, S., Frosio, I., Reddy, D., Kautz, J.: Robust model-based 3D head pose estimation. In: ICCV, pp. 3649–3657 (2015)

    Google Scholar 

  24. Morency, L.P.: 3D constrained local model for rigid and non-rigid facial tracking. In: IEEE CVPR (2012)

    Google Scholar 

  25. Padeleris, P., Zabulis, X., Argyros, A.A.: Head pose estimation on depth data based on particle swarm optimization. In: IEEE CVPR Workshops, pp. 42–49 (2012)

    Google Scholar 

  26. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 296–301 (2009)

    Google Scholar 

  27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE CVPR, pp. 652–660 (2017)

    Google Scholar 

  28. Richardson, E., Sela, M., Kimmel, R.: 3D face reconstruction by learning from synthetic data. In: 3DV, pp. 460–469 (2016)

    Google Scholar 

  29. Richardson, E., Sela, M., Or-El, R., Kimmel, R.: Learning detailed face reconstruction from a single image. In: IEEE CVPR, pp. 5553–5562 (2017)

    Google Scholar 

  30. Shin, D., Fowlkes, C.C., Hoiem, D.: Pixels, voxels, and views: a study of shape representations for single view 3D object shape prediction. In: IEEE CVPR, pp. 3061–3069 (2018)

    Google Scholar 

  31. Tewari, A., et al.: Self-supervised multi-level face model learning for monocular reconstruction at over 250 Hz. In: IEEE CVPR, pp. 2549–2559 (2018)

    Google Scholar 

  32. Tewari, A., et al.: MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: IEEE ICCV, vol. 2, p. 5 (2017)

    Google Scholar 

  33. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: IEEE CVPR, pp. 2387–2395 (2016)

    Google Scholar 

  34. Tran, A.T., Hassner, T., Masi, I., Medioni, G.: Regressing robust and discriminative 3D morphable models with a very deep neural network. In: IEEE CVPR, pp. 1493–1502 (2017)

    Google Scholar 

  35. Wang, N., Gao, X., Tao, D., Yang, H., Li, X.: Facial feature point detection: a comprehensive survey. Neurocomputing 275, 50–65 (2017). https://www.sciencedirect.com/science/article/abs/pii/S0925231217308202

    Article  Google Scholar 

  36. Wang, W., Ceylan, D., Mech, R., Neumann, U.: 3DN: 3D deformation network. In: IEEE CVPR, pp. 1038–1046 (2019)

    Google Scholar 

  37. Weise, T., Bouaziz, S., Li, H., Pauly, M.: Realtime performance-based facial animation. ACM Trans. Graph. 30, 77 (2011)

    Article  Google Scholar 

  38. Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. In: NIPS, pp. 1696–1704 (2016)

    Google Scholar 

  39. Zhu, X., Liu, X., Lei, Z., Li, S.Z.: Face alignment in full pose range: a 3D total solution. IEEE Trans. PAMI 41(1), 78–92 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC 61876008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuru Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, P. et al. (2020). An Unsupervised Approach for 3D Face Reconstruction from a Single Depth Image. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation