Application of Hemicellulose in Biohydrogen Production

  • Chapter
  • First Online:
Sustainable Bioconversion of Waste to Value Added Products

Abstract

This chapter discusses the sources, the structure and the characteristics of hemicellulose, methods of biohydrogen production, pretreatment methods of lignocellulose material and the steps involved in the bioconversion of hemicellulose to hydrogen gas. The depletion in fossil fuel reserves, coupled with high dependency on its usage, tends to create a crisis in energy around the globe. Moreover, the rise in fuel price, along with the increasing demand resulting from high population density, has led to more research for alternative sources of energy. The environmental pollution (such as the emission of greenhouse gases and ozone layer depletion) resulting from utilizing fossil fuel and its related products is another source of concern to the research community as it constitutes harm to mankind. Hydrogen gas has a lot in stock for the global energy demand, because of its high energy content. It is renewable and eco-friendly. Hydrogen gas can be produced from biological materials like hemicellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allahverdiyeva, Y., Leino, K., Saari, L., Fewer, D. P., Shunmugam, S., Sivonen, K., et al. (2008). Biofules generation form sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology, 99, 110–119.

    Article  CAS  Google Scholar 

  • Amin, F. R., Khalid, H., Zhang H. et al. (2017). Pretreatment of lignocellulosic biomass for anaerobic digestion. AMB Express 7, 72. https://doi.org/10.1186/s13568-017-0375-4

  • Anish, R., & Rao, M. (2009). Bioethanol from lignocellulosic biomass part iii hydrolysis and fermentation. Handbook of Plant-Based Biofuels, 159–173

    Google Scholar 

  • Apilak, S., Pensri, P., Sureewan, S., Mallika,B. K., Siriporn, L., & Alissara, R. (2019). Bio-hydrogen and methane production from lignocellulosic materials, biomass for bioenergy - recent trends and future challenges, Abd Ed-Fatah Abomohra, intechopen. http://dx.doi.org/10.5772/intechopen.85138,

  • Aresta, M., Dibenedetto, A., & Dumeignil, F. (2012). Biorefinery: from biomass to chemicals and fuels. Berlin; Boston, MA: Walter de Gruyter & Co.

    Google Scholar 

  • Argun, H., Kargi, F., Kapdan, I. K., & Oztekin, R. (2008). Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy, 33, 1813–1819. https://doi.org/10.1016/j.ijhydene.2008.01.038.

    Article  CAS  Google Scholar 

  • Argun, H., Kargi, F., & Kapdan, I. (2009). Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation. International Journal of Hydrogen Energy, 34, 2195–2200.

    Article  CAS  Google Scholar 

  • Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., & Lens, P. N. L. (2014). Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy, 123, 143–156.

    Article  CAS  Google Scholar 

  • Avellar, B. K., & Glasser W. G. (1998). Steam-assisted biomass fractionation. Process considerations and economic evaluation. Biomass Bioenergy 14(3), 205–18.

    Google Scholar 

  • Baêta, B. E. L., Lima, D. R. S., Filho, J. G. B., Adarme, O. F. H., Gurgel, L. V. A., & de Aquino, S. F. (2016). Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process. Bioresource Technology, 218, 436–446.

    Article  CAS  Google Scholar 

  • Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551–573.

    Article  CAS  Google Scholar 

  • Bjerre, A. B., Olesen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicelluloses. Biotechnology and Bioengineering, 49(5), 568–577.

    Article  CAS  Google Scholar 

  • Bugge, M. M., Hansen, T., & Klitkou, A. (2016). What is the bioeconomy? A review of the literature. Sustainability 8(7).

    Google Scholar 

  • Canilha, L., Almeida e Silva, J. B., Solenzal, A. I. N. (2004). Eucalyptus hydrolysate detoxification with active charcoal adsorption or ion-exchange resins for xylitol production. Process Biochemistry 39, 1909–1912

    Google Scholar 

  • Canilha, L., Carvalho, W., Giulietti, M., Felipe, M. G. A., Almeida e Silva, J. B. (2008). Clarification of wheat straw-derived medium with ion-exchange resins for xylitol crystallization. Journal of Chemical Technology and Biotechnology 83, 715–721

    Google Scholar 

  • Canilha, L., Chandel, A. K., dos Santos, Milessi T. S., Antunes, F. A. F., da Costa, Freitas W. L., Felipe, M. G. A., et al. (2012). Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology. https://doi.org/10.1155/2012/989572.

    Article  Google Scholar 

  • Canilha, L., Rodrigues, R. C. L. B., Antunes, F. A. F., Chandel, A. K., Milessi, T. S., d A Felipe, M. & da Silva, S. S. (2013). Bioconversion of hemicellulose from sugarcane biomass into sustainable products. In A. K. Chandel & S. S. da Silva (Eds.), Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. Croatia: InTech. http://dx.doi.org/10.5772/1490.

  • Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochemistry, 39, 1533–1542.

    Article  CAS  Google Scholar 

  • Cao, G., Zhao, L., Wang, A., Wang, Z., & Ren, N. (2014). Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnology for Biofuels, 7, 82.

    Article  CAS  Google Scholar 

  • Carlo, A. P. F., Hamelinck, N., & Hooijdonk, G V. (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term, 28, 384–410.

    Google Scholar 

  • Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Hemicellulose biorefineries: A review on biomass pretreatments. Journal of Scientific & Industrial Research, 67, 849–864.

    CAS  Google Scholar 

  • Carvalho, W., Batista, M. A., Canilha, L., Santos, J. C., Converti, A., & Silva, S. S. (2004). Sugarcane bagasse hydrolysis with phosphoric and sulfuric acids and hydrolysate detoxification for xylitol production. Journal of Chemical Technology and Biotechnology, 79(11), 1308–1312.

    Article  CAS  Google Scholar 

  • Chamy, R., Illanes, A., Aroca, G., & Nunes, I. (1994). Acid hydrolysis of sugarbeet pulp as pretreatment for fermentation. Bioresource Technology, 50, 149.

    Article  CAS  Google Scholar 

  • Chandel, A. K., Silva, S. S., & Singh, O. V. (2011). Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In M. A. S. Bernardes (Ed.), Biofuel production-recent developments and prospects (pp. 225–246). InTech: Rijeka, Croatia.

    Google Scholar 

  • Chaud, L. C. S., Silva, D. D. V., Felipe, M. G. A. (2012). Evaluation of fermentative performance of Candida guilliermondii in sugarcane bagasse hemicellulosic hydrolysate detoxified with activated charcoal or vegetal polymer. In A Mendez-Villas (Ed.), Microbes in applied research: current advances and challenges. World Scientific Publishing Co. Pte. Ltd.; ISBN: 978-981-4405-03-4

    Google Scholar 

  • Chi, C., Chang, H., Li, Z., Jameel, H., & Zhang, Z. (2013). A method for rapid determination of sugars in lignocelluloses prehydrolyzate. BioResources, 8, 172–181.

    Google Scholar 

  • Chookaew, T., Prasertsan, P., & Ren, Z. J. (2014). Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. New Biotechnology, 31(2), 179–84.

    Article  CAS  Google Scholar 

  • Choudhary, J., Singh, S., & Nain, L. (2017). Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Journal of Bioscience and Bioengineering, 123(3), 342–6.

    Article  CAS  Google Scholar 

  • Das, D., & Veziroglu, T. N. (2008). Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 33, 6046–6057.

    Article  CAS  Google Scholar 

  • De Gioannis, G., Muntoni, A., Polettini, A., & Pomi, R. (2013). A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Management 33(6), 1345–1361. New York, N.Y.

    Google Scholar 

  • Delbecq, F., Wang, Y., Muralidhara, A., El Ouardi, K., Marlair, G., & Len, C. (2018). Hydrolysis of hemicellulose and derivatives—a review of recent advances in the production of furfural. Frontiers in Chemistry, 6, 146. https://doi.org/10.3389/fchem.2018.00146.

    Article  CAS  Google Scholar 

  • Egües, I., Sanchez, C., Mondragon, I., & Labidi, J. (2012). Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresource Technology, 103(1), 239–248.

    Article  CAS  Google Scholar 

  • Elgharbawy, A. A., Alam, M. Z., Moniruzzaman, M., & Goto, M. (2016). Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal, 109, 252–267. https://doi.org/10.1016/j.bej.2016.01.021.

    Article  CAS  Google Scholar 

  • Eroglu, E., & Melis, A. (2011). Photobiological hydrogen production: Recent advances and state of the art. Bioresource Technology, 102(18), 8403–13.

    Article  CAS  Google Scholar 

  • Farhat, W., Venditti, R. A., Hubbe, M., Taha, M., Becquart, F., & Ayoub, A. (2017). A review of water-resistant hemicellulose-based materials: Processing and applications. Chemsuschem, 10, 305–323.

    Article  CAS  Google Scholar 

  • Flórez-Pardo, L. M., González-Córdoba, A., & López-Galán, E. (2018). Evaluation of different methods for efficient extraction of hemicelluloses leaves and tops of sugarcane. DYNA, 85(204), 18–27.

    Article  CAS  Google Scholar 

  • Froschauer, C., Hummel, M., Iakovlev, M., Roselli, A., Schottenberger, H., & Sixta, H. (2013). Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules, 14(6), 1741–1750.

    Article  CAS  Google Scholar 

  • Giuseppe, P., Giulia, Z., Alessandra, F., Sergio, B., R, Samir, B. (2019). Aqueous phase reforming of sugar-based biorefinery streams: from the simplicity of model compounds to the complexity of real feeds. Catalysis Today. https://doi.org/10.1016/j.cattod.2019.09.031.

  • Glazer, A. N., & Nikaido, H. (2007). Microbial biotechnology: fundamentals of applied microbiology (2nd ed.). New York: W.H Freeman and Company.

    Book  Google Scholar 

  • Gürtekin, E. (2014). Biological hydrogen production methods. ISEM2014 Adiyaman–TURKEY.

    Google Scholar 

  • Guwy, A. J., Dinsdale, R. M., Kim, J. R., Massanet-Nicolau, J., & Premier, G. (2011). Fermentative biohydrogen production systems integration. Bioresource Technology, 102(18), 8534–42.

    Article  CAS  Google Scholar 

  • Hallenbeck, P. C., & Benemann, J. R., Biohydrogen-The microbiological production of hydrogen fuel biotechnology–Vol.VII, Encyclopedia of Life Support Systems (EOLSS).

    Google Scholar 

  • Hamelinck, C. N., van Hooijdonk, G., & Faaij, A. P. C. (2005). Ethanol from lignocellulosic biomass: Techno-economic performance in short-middle- and long-term. Biomass and Bioenergy, 28, 384–410.

    Article  CAS  Google Scholar 

  • Hasegawa, K. T., Okuma O., & Mae, K. (2004). New pretreatment methods combining a hot water treatment and water / acetone extraction for thermo-chemical conversion of biomass, 45(6), 755–760

    Google Scholar 

  • Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318. https://doi.org/10.1016/j.biortech.2018.04.099.

    Article  CAS  Google Scholar 

  • Hendriks, A. T. W. M., & Zeeman, G. (2008). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  • Hepbasli, A., Kalinci, Y., & Dincer, I. (2009). Biomass-based hydrogen production: a review and analysis. International Journal of Hydrogen Energy, 34, 8799–8817.

    Article  CAS  Google Scholar 

  • Hou-Rui, Z., **ang-**ang, Q., Silva, S. S., Sarrouh, B. F., Ai-Hua, C., Yu-Heng, Z., et al. (2009). Novel isolates for biological detoxification of lignocellulosic hydrolysate. Applied Biochemistry and Biotechnology, 152, 199–212.

    Article  CAS  Google Scholar 

  • IRENA. (2018). Hydrogen from renewable power: Technology outlook for the energy transition. Abu Dhabi: International Renewable Energy Agency.

    Google Scholar 

  • Jönsson, L. J., Alriksson, B., & Nilvebrant, N. (2013). Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels, 6, 16.

    Article  CAS  Google Scholar 

  • Kanchanalai, P., Temani, G., Kawajiri, Y., & Realff, M. J. (2016). Reaction kinetics of concentrated-acid hydrolysis for cellulose and hemicellulose and effect of crystallinity. BioResources, 11(1), 1672–1689.

    Article  CAS  Google Scholar 

  • Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38, 569–582.

    Article  CAS  Google Scholar 

  • Karolina, K., Hubert, C., Piotr, R., Edyta, S., Rafał, Ł., Katarzyna, W., et al. (2019). Fermentative conversion of two-step pre-treated lignocellulosic biomass to hydrogen. Catalysts, 9, 858.

    Article  CAS  Google Scholar 

  • Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4, 1–19. https://doi.org/10.1186/s40643-017-0137-9.

    Article  CAS  Google Scholar 

  • Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729. https://doi.org/10.1021/ie801542g.

    Article  CAS  Google Scholar 

  • Kuppam, C., Yong-Jik, L., & Dong-Woo, L. (2015). Biohydrogen production: Strategies to improve process efficiency through microbial routes. International Journal of Molecular Sciences, 16, 8266–8293. https://doi.org/10.3390/ijms1604826.

    Article  Google Scholar 

  • Kusmardini, D., Prasetyo, J., Saepudin, E., & Hudiyono, S. (2018). Biohydrogen production through separate hydrolysis and fermentation and simultaneous saccharification and fermentation of empty fruit bunch of palm oil. Research Journal of Chemistry and Environment, 22(Special Issue II), 193–197.

    Google Scholar 

  • Laopaiboon, P., Thani, A., Leelavatcharamas, V., & Laopaiboon, L. (2010). Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technology, 101(3), 1036–1043.

    Article  CAS  Google Scholar 

  • Lawther, J. M., Sun, R., & Banks, W. (1996). Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. Journal of Applied Polymer Science, 60, 1827–1837.

    Article  CAS  Google Scholar 

  • Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29, 173–185.

    Article  CAS  Google Scholar 

  • Li, Y. (2014). Studies on the cellulose hydrolysis and hemicellulose monosaccharide degradation in concentrated hydrochloric acid (Thesis). Canada: University of Ottawa.

    Google Scholar 

  • Li, C., & Fang, H. H. P. (2007). Fermentative hydrogen production from wastewater and solid wastes by mixed Cultures. Critical Reviews in Environmental Science and Technology, 37(1), 1–39.

    Article  CAS  Google Scholar 

  • Lindberg, P., Devine, E., Stensjo, K., Lindblad, P. (2012). HupW protease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Applied and environmental microbiology 78, 273–76.

    Google Scholar 

  • Li, Z., Qin, M., Xu, C., & Chen, X. (2013). Hot water extraction of hemicelluloses from Aspen wood chips of different sizes. 8(4), 5690–5700.

    Google Scholar 

  • Maness, PC., Czernik, S., & Smolinski, S. (2005). Fermentation approaches to hydrogen production. DOE Hydrogen Program, FY 2005 Progress Report 230–235.

    Google Scholar 

  • Mansor, A. M., Lim, J. S., Ani, F. N., Hashim, H., & Ho, W. S. (2019). Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chemical Engineering Transactions, 72, 79–84. https://doi.org/10.3303/CET1972014.

    Article  Google Scholar 

  • McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83, 37–46.

    Article  CAS  Google Scholar 

  • Milne, T. A., Elam, C. C., & Evans, R. J. (n.d). Hydrogen from Biomass State of the Art and Research Challenges. National Renewable Energy Laboratory Golden, CO USA. I EAIH2/TR-02/001.

    Google Scholar 

  • Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J.-P., & Carrère, H. (2013). Lignocellulosic materials into biohydrogen and biomethane: Impact of structural Features and pretreatment. Critical Reviews in Environmental Science and Technology 43(3), 260–322.

    Google Scholar 

  • Moreno, R., Escapa, A., Cara, J., Carracedo, B., & Gómez, X. (2015). A two-stage process for hydrogen production from cheese whey: Integration of dark fermentation and biocatalyzed electrolysis. International Journal of Hydrogen Energy, 40(1), 1–8.

    Article  CAS  Google Scholar 

  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–86.

    Article  CAS  Google Scholar 

  • Motte, J.-C., Trably, E., Hamelin, J., Escudié, R., Bonnafous, A., Steyer, J.-P., and Dumas, C. (2014). Total solid content drives hydrogen production through microbial selection during thermophilic fermentation. Bioresource Technology 166, 610–615.

    Google Scholar 

  • Moure, A., Gullón, P., Domínguez, H., & Parajó, J. C. (2006). Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 41(9), 1913–1923.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., & Roberto, I. C. (2001). Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii. Biotechnology Letters, 23, 1681–1684.

    Article  CAS  Google Scholar 

  • Nabarlatz, D., Montane, D., Kardosova, A., Bekesova, S., Hribalova, V., & Ebringerova, A. (2007). Almond shell xylo-oligosaccharides exhibiting immunostimulatory activity. Carbohydrate Research, 342(8), 1122–1128.

    Article  CAS  Google Scholar 

  • Nguyen, Q. A., Tucker, M. P., Keller, F., & Eddy, F. P. (2000). Two-stage dilute-acid pretreatment of softwoods. Biotechnology and Applied Biochemistry 84–86, 561–576

    Google Scholar 

  • Nilvebrant, N., Reimann, A., Larsson, S., & Jonsson, L. J. (2001). Detoxification of lignocelluloses hydrolysates with ion-exchange resins. Applied Biochemistry and Biotechnology 91–93, 35–49.

    Google Scholar 

  • Ntaikou, I., Antonopoulou, G., & Lyberatos, G. (2010). Biohydrogen production from biomass and wastes via dark fermentation: A review. Waste and Biomass Valorization, 1(1), 21–39.

    Article  CAS  Google Scholar 

  • Ogier, J. C., Ballerini, D., Leygue, J. P., Rigal, L., & Pourquie, J. (1999). Ethanol production from lignocellulosic biomass. Oil & Gas Science and Technology-Revue de l’ Institut Francaisdu Petrole, 54, 67–94.

    Article  CAS  Google Scholar 

  • Palmqvist, E., & Hahn-Hagerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour Technol 74(1), 17–24.

    Google Scholar 

  • Palm, M., & Zacchi, G. (2003). Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromolecules, 4(3), 617–623.

    Article  CAS  Google Scholar 

  • Pauly, M., Gille, S.,·Liu, L., Mansoori, N., de Souza, A., Schultink, A. & **ong, G. (2013). Hemicelluloses biosynthesis. Planta 238,627–642.

    Google Scholar 

  • Pauly, M., & Keegstra, K. (2010). Plant cell wall polymers as precursors for biofuels. Current Opinion in Plant Biology, 13, 305–312.

    Article  CAS  Google Scholar 

  • Peŕez, J., Muñoz-Dorado, J., de la Rubia, T., Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicelluloses and lignin: an overview. International Microbiology 5, 53–63.

    Google Scholar 

  • Peng, Y., & Wu, S. (2011). Fast pyrolysis characteristics of sugarcane bagasse hemicellulose. Cellulose Chemistry and Technology, 45(9–10), 605–612.

    CAS  Google Scholar 

  • Pessoa, J. R. A., Mancilha, I. M., & Sato, S. (1997). Acid hydrolysis of hemicelluloses from sugarcane bagasse. Brazilian Journal of Chemical Engineering 14(3).

    Google Scholar 

  • Pinto, F., Troshina, O., & Lindblad, P. (2002). A brief look at three decades of research on cyanobacterial hydrogen evolution. International journal of hydrogen energy 27, 1209–1215.

    Google Scholar 

  • Quemeneur, M., Hamelin, J., Barakat, A., et al. (2012). Inhibition of fermentative hydrogen production by lignocelluloses derived compounds in mixed cultures. International Journal of Hydrogen Energy, 37, 3150–3159.

    Article  CAS  Google Scholar 

  • Rai, P. K., Singh, S. P., & Asthana, R. K. (2014). Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresource Technology, 152, 140–146.

    Article  CAS  Google Scholar 

  • Redwood, M. D., Paterson-Beedle, M., & Macaskie, L. E. (2008). Integrating dark and light bio-hydrogen production strategies: Towards the hydrogen economy. Reviews in Environmental Science and Bio/Technology, 8(2), 149–185.

    Article  CAS  Google Scholar 

  • Reginatto, V., & Antônio, R. V. (2015). Fermentative hydrogen production from agroindustrial lignocellulosic substrates. Brazilian Journal of Microbiology, 46(2), 323–335.

    Article  Google Scholar 

  • Ren, N., Guo, W., Liu, B., Cao, G., & Ding, J. (2011). Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Current Opinion in Biotechnology, 22(3), 365–70.

    Article  CAS  Google Scholar 

  • Robak, K., & Balcerek, M. (2018). Review of second generation bioethanol production from residual biomass food technol. Biotechnol, 56(2), 174–187.

    CAS  Google Scholar 

  • Rowell, R. M., Pettersen, R., Han, J. S., Rowell, J. S., & Tshabalala, M. A. (2005). Cell wall chemistry. In C. R. C. Press (Ed.), Handbook of wood chemistry and wood composites (pp. 35–74). USA: Florida.

    Chapter  Google Scholar 

  • Safari, F., Tavasoli, A., Ataei, A., & Choi, J. (2015). Hydrogen and syngas production from gasification of lignocellulosic biomass in supercritical water media. International Journal of Recycling of Organic Waste in Agriculture, 4, 121–125.

    Article  Google Scholar 

  • Saratale, G. D., Chen, S., Lo, Y., Saratale, R. G., & Chang, J. (2008). Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation–a review. Journal of Scientific & Industrial Research, 67, 962–979.

    CAS  Google Scholar 

  • Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology 61, 263–289

    Google Scholar 

  • Seidl, P. R., & Goulart, A. K. (2016). Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry, 2, 48–53. https://doi.org/10.1016/j.cogsc.2016.09.003.

    Article  Google Scholar 

  • Sen, U., Shakdwipee, M., & Banerjee, R. (2008). Status of biological hydrogen production. Journal of Scientific & Industrial Research, 67, 980–993.

    CAS  Google Scholar 

  • Show, K., Lee, D., & Chang, J. (2011). Bioreactor and process design for biohydrogen production. Bioresource Technology, 102(18), 8524–8533.

    Article  CAS  Google Scholar 

  • Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y., & Chang, J. S. (2012). Biohydrogen production: Current perspectives and the way forward. International Journal ofHydrogen Energy, 37(20), 15616–15631.

    Article  CAS  Google Scholar 

  • Silva, J. B. A. (1995). Utilization of the hydrolysate of Eucalyptus hemicelluloses for production of microbial protein. Arquivos de Biologia e Tecnologia, 38, 147.

    CAS  Google Scholar 

  • Silva, F. G., Ferreira-Leitão, V. S., & Cammarota, M. C. (2019). Strategies for increasing the biohydrogen yield in anaerobic fermentation of xylose. Environment and Natural Resources Research, 9(3), 32–40.

    Article  Google Scholar 

  • Sołowski, G., Konkol, I., & Cenian, A. (2019). Perspectives of hydrogen production from cornwastes in poland by means of dark fermentation. Ecological Chemistry and Engineering S, 26(2), 255–263.

    Article  CAS  Google Scholar 

  • Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 3, 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7.

    Article  Google Scholar 

  • Świątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., & Steinbach, D. (2020). Acid hydrolysis of lignocellulosic biomass: sugars and furfurals formation. Catalysts, 10, 437.

    Article  CAS  Google Scholar 

  • Teymouri, F., Laureano-Perez, L., Alizadeh, H., & Dale, B. E. (2005). Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresource Technology, 96(18), 2014–2018.

    Article  CAS  Google Scholar 

  • Tong, Z., Cheng, N., & Pullammanappallil, P. (2013). Pretreatment of Ligno-cellulosic biomass for biofuels and bioproducts UF/IFAS extension. AE495.

    Google Scholar 

  • Tungler, A., Szabados, E., & Hosseini, A. M. (2015). Wet air oxidation of aqueous wastes. In S. Mohammed (Ed.) Wastewater treatment engineering. Rijeka: Intechopen. https://doi.org/10.5772/60935.

  • Vena, P. F., Brienzo, M., Delprado Garcia-Aparicio, M., Gorgens, J. F., Rypstra, T. (2013). Hemicelluloses extraction from giant bamboo (Bambusa balcooa Roxburgh) prior to kraft or soda-AQ pul** and its effect on pulp physical properties. Holzforschung 67(8), 863–870.

    Google Scholar 

  • Wagner, R. S. (2013). Microbial Degradation of Lignocellulosic Biomass. In A. K. Chandel & S. S. da Silva (Eds.) Sustainable degradation of lignocellulosic biomass - techniques, applications and commercialization. Croatia: InTech. http://dx.doi.org/10.5772/1490

  • Wang, G. S., Pan, X. J., Zhu, J. Y., Gleisner, R., & Rockwood, D. (2009). Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnology Progress, 25(4), 1086–93.

    Article  CAS  Google Scholar 

  • Wei, L., Yan, T., Wu, Y., Chen, H., & Zhang, B. (2018). Optimization of alkaline extraction of hemicellulose from sweet sorghum bagasse and its direct application for the production of acidic xylooligosaccharides by Bacillus subtilis strain MR44. PLoS ONE 13(4), e0195616. https://doi.org/10.1371/journal.pone.0195616

  • Willför, S., Sundberg, A., Pranovich, A., & Holmbom, B. (2005a). Polysaccharides in some industrially important hardwood species. Wood Science and Technology, 39, 601–617. https://doi.org/10.1007/s00226-005-0039-4.

    Article  CAS  Google Scholar 

  • Willför, S., Sundberg, A., Hemming, J., & Holmbom, B. (2005b). Polysaccharides in some industrially important softwood species. Wood Science and Technology, 39, 245–257. https://doi.org/10.1007/s00226-004-0280-2.

    Article  CAS  Google Scholar 

  • Wilson, J. J., Deschatelets, L., & Nishikawa, N. K. (1989). Comparative fermentability of enzymatic and acid hydrolysates of steam-pretreated aspen wood hemicellulose by Pichia stipitis CBS 5776. Applied Microbiology and Biotechnology, 31(5–6), 592–596.

    Article  CAS  Google Scholar 

  • Wong, Y. M., Wu, T. Y., & Juan, J. C. (2014). A review of sustainable hydrogen production using seed sludge via dark fermentation. Renewable and SustainableEnergy Reviews, 34, 471–482.

    Article  CAS  Google Scholar 

  • Wu, C., Wang, Z., Huang, J., & Williams, P. T. (2013). Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. Fuel, 106, 697–706.

    Article  CAS  Google Scholar 

  • Wyman, C. E. (1999). Biomass ethanol: technical progress, opportunities and commercial challenges. Annual Review of Energy and the Environment, 24, 189–226.

    Article  Google Scholar 

  • Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  • Zhang, Y. H. P., Ding, S. Y., Mielenz, J. R., Cui, J. B., Elander, R. T., Laser, M., et al. (2007). Fractionating recalcitrant lignocellulose at modest reaction condition. Biotechnology and Bioengineering, 97(2), 214–23.

    Article  CAS  Google Scholar 

  • Zhang, J., Choi, Y. S., Yoo, C. G., Kim, T. H., Brown, R. C., & Shanks, B. H. (2015). Cellulose − hemicellulose and cellulose − lignin interactions during fast pyrolysis. ACS Sustainable Chemistry and Engineering, 3, 293–301.

    Article  CAS  Google Scholar 

  • Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33. https://doi.org/10.1016/j.biortech.2015.08.102.

    Article  CAS  Google Scholar 

  • Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology Biotechnology, 82(5), 815–27.

    Article  CAS  Google Scholar 

  • Zhou, X., Li, W., Mabon, R., & Broadbelt, L. J. (2017). A critical review on hemicellulose pyrolysis. Energy Technology, 5, 52–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. C. Akubude .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akubude, V.C., Okafor, V.C., Oyedokun, J.A., Petinrin, O.O., Nwaigwe, K.N. (2021). Application of Hemicellulose in Biohydrogen Production. In: Inamuddin, Khan, A. (eds) Sustainable Bioconversion of Waste to Value Added Products. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-61837-7_19

Download citation

Publish with us

Policies and ethics

Navigation