An Immersed Boundary Method on Cartesian Adaptive Grids for the Simulation of Compressible Flows

  • Conference paper
  • First Online:
Cartesian CFD Methods for Complex Applications

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 3))

  • 583 Accesses

Abstract

In this article, we present an immersed boundary method (IBM) for the simulation of compressible flows encountered in aerodynamics. The immersed boundary methods allow the mesh not to conform to obstacles, whose influence is taken into account by modifying the governing equations locally (either by a source term within the equation or by imposing the flow variables or fluxes locally, similarly to a boundary condition).

A main feature of the approach we propose is that it relies on structured Cartesian grids in combination with a dedicated HPC Cartesian solver, taking advantage of not only their low memory and CPU time requirements but also the automation of the mesh generation and adaptation. Turbulent flow simulations are performed with Reynolds-Averaged Navier–Stokes equations or with Large-Eddy Simulation approach, in combination with a wall function at high Reynolds number, in order to mitigate the cell count resulting from the isotropic nature of Cartesian cells.

The objective of this paper is to demonstrate the capability of the present immersed boundary method on Cartesian adaptive grids to capture compressible flow features. Results obtained are in good agreement with classical body-fitted approaches but with a significant reduction of the time of the whole process, that is, a day for RANS simulations, including the mesh generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://elsa.onera.fr/Cassiopee/Userguide.html

  2. https://w3.onera.fr/FAST

  3. Benoit, C., Péron, S., Landier, S.: Cassiopee: a CFD pre- and post-processing tool. Aerospace Sci. Technol. 45, 272–283 (2015)

    Article  Google Scholar 

  4. Berger, M.J., Aftosmis, M.J.: Progress towards a Cartesian cut-cell method for viscous compressible flow. In: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, pp. 2012–1301 (2012)

    Google Scholar 

  5. Berger, M.J., Aftosmis, M.J.: An ODE-based wall model for turbulent flow simulations. AIAA J., 1–15 (2017)

    Google Scholar 

  6. Beyer, R.P., LeVeque, R.J.: Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal. 29(2), 332–364 (1992)

    Article  MathSciNet  Google Scholar 

  7. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4-6), 199–228 (1992)

    Article  Google Scholar 

  8. Brehm, C., Barad, M.F., Kiris, C.C.: Open rotor computational aeroacoustic analysis with an immersed boundary method. In: 54th AIAA Aerospace Sciences Meeting, p. 0815 (2016)

    Google Scholar 

  9. Capizzano, F.: Turbulent wall model for immersed boundary methods. AIAA J. 49(11), 2367–2381 (2011)

    Article  Google Scholar 

  10. Chen, Z.L., Hickel, S., Devesa, A., Berland, J., Adams, N.A.: Wall modeling for implicit large-eddy simulation and immersed-interface methods. Theor. Comput. Fluid Dyn. 28(1), 1–21 (2014)

    Article  Google Scholar 

  11. Coakley, T.J.: Implicit upwind methods for the compressible Navier-Stokes equations. AIAA J. 23(3), 374–380 (1985)

    Article  Google Scholar 

  12. Coirier, W.J., Powell, K.G.: Solution-adaptive Cartesian cell approach for viscous and inviscid flows. AIAA J. 34(5), 938–945 (1996)

    Article  Google Scholar 

  13. Dandois, J., Mary, I., Brion, V.: Large-eddy simulation of laminar transonic buffet. J. Fluid Mech. 850, 156–178 (2018)

    Article  MathSciNet  Google Scholar 

  14. Daude, F., Mary, I., Comte, P.: Self-adaptive Newton-based iteration strategy for the les of turbulent multi-scale flows. Comput. Fluid. 100, 278–290 (2014)

    Article  MathSciNet  Google Scholar 

  15. Edwards, J.R., Liou, M.-S.: Low-diffusion flux-splitting methods for flows at all speeds. AIAA J. 36(9), 1610–1617 (1998)

    Article  Google Scholar 

  16. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)

    Article  MathSciNet  Google Scholar 

  17. Garnier, E., Mossi, M., Sagaut, P., Comte, P., Deville, M.: On the use of shock-capturing schemes for large-eddy simulation. J. Comput. Phys. 153(2), 273–311 (1999)

    Article  Google Scholar 

  18. Jameson, A., Yoon, S.: Lower-upper implicit schemes with multiple grids for the Euler equations. AIAA J. 25(7), 929–935 (1987)

    Article  Google Scholar 

  19. Laurent, C., Mary, I., Gleize, V., Lerat, A., Arnal, D.: DNS database of a transitional separation bubble on a flat plate and application to RANS modeling validation. Comput. Fluids 61, 21–30 (2012)

    Article  Google Scholar 

  20. Le Garrec, T., Mincu, D.C., Terracol, M., Casalino, D., Ribeiro, A.: Aeroacoustic prediction of the LEISA2 high-lift airfoil: Lattice Boltzmann method vs. Navier-Stokes Finite Volume method and experiments. In: Turbulence and Interactions Conference (2015)

    Google Scholar 

  21. Le Gouez, J.M.: A finite volume method for high Mach number flows on high-order grids. In: 7th European Conference on Computational Fluid Dynamics (ECFD 7) (2018)

    Google Scholar 

  22. Mary, I.: Flexible Aerodynamic Solver Technology in an HPC environment. Maison de la Simulation Seminars (2016). http://www.maisondelasimulation.fr/seminar/data/201611_slides_1.ppt

  23. Mary, I., Sagaut, P.: Large Eddy simulation of flow around an airfoil near stall. AIAA J. 40(6), 1139–1145 (2002)

    Article  Google Scholar 

  24. Meakin, R.L.: Object X-Rays for cutting holes in composite overset structured grids. In: 15th AIAA Computational Fluid Dynamics Conference, pp. 2001–2537 (2001)

    Google Scholar 

  25. Mittal, R., Iaccarino, G.: Immersed boundary methods. Ann. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  26. Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., von Loebbecke, A.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227(10), 4825–4852 (2008)

    Article  MathSciNet  Google Scholar 

  27. Mochel, L., Weiss, P.-E., Deck, S.: Zonal immersed boundary conditions: application to a high-Reynolds-number afterbody flow. AIAA J. 52(12), 2782–2794 (2014)

    Article  Google Scholar 

  28. Musker, A.J.: Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J. 17(6), 655–657 (1979)

    Article  Google Scholar 

  29. Nakahashi, K.: Immersed boundary method for compressible Euler equations in the Building-Cube Method. AIAA Paper, pp. 2011–3386 (2011)

    Google Scholar 

  30. Péron, S., Benoit, C.: Automatic off-body overset adaptive Cartesian mesh method based on an octree approach. J. Comput. Phys. 232(1), 153–173 (2013)

    Article  Google Scholar 

  31. Péron, S., Benoit, C., Renaud, T., Mary, I.: An immersed boundary method on Cartesian adaptive grids for the simulation of compressible flows around arbitrary geometries. Eng. Comput. 1–19 (2020)

    Google Scholar 

  32. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MathSciNet  Google Scholar 

  33. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  34. Poinot, M.: Five good reasons to use the hierarchical data format. Comput. Sci. Eng. 12(5), 84–90 (2010)

    Article  Google Scholar 

  35. Renaud, T., Benoit, C., Péron, S., Mary, I., Alferez, N.: Validation of an immersed boundary method for compressible flows. In: AIAA Scitech 2019 Forum. AIAA Paper, pp. 2019–2179 (2019)

    Google Scholar 

  36. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  37. Rumsey, C.L., Wedan, B., Hauser, T., Poinot, M.: Recent updates to the CFD general notation system (CGNS). In: 50th AIAA Aerospace Sciences Meeting, vol. 10, pp. 6–2012 (2012)

    Google Scholar 

  38. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  Google Scholar 

  39. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA J. 94 (1992)

    Google Scholar 

  40. Terracol, M., Manoha, E.: Wall-resolved large eddy simulation of a high-lift airfoil: detailed flow analysis and noise generation study. In: 20th AIAA/CEAS Aeroacoustics Conference. AIAA Paper, pp. 2014-3050 (2014)

    Google Scholar 

  41. Tseng, Y.-H., Ferziger, J.H.: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192(2), 593–623 (2003)

    Article  MathSciNet  Google Scholar 

  42. Vreman, A.W.: Direct and Large-Eddy Simulation of the Compressible Turbulent Mixing Layer. Universiteit Twente, Enschede (1995)

    Google Scholar 

  43. Zhu, W.J., Behrens, T., Shen, W.Z., Sørensen, J.N.: Hybrid immersed boundary method for airfoils with a trailing-edge flap. AIAA J. 51(1), 30–41 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Péron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Péron, S., Renaud, T., Benoit, C., Mary, I. (2021). An Immersed Boundary Method on Cartesian Adaptive Grids for the Simulation of Compressible Flows. In: Deiterding, R., Domingues, M.O., Schneider, K. (eds) Cartesian CFD Methods for Complex Applications. SEMA SIMAI Springer Series(), vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-61761-5_4

Download citation

Publish with us

Policies and ethics

Navigation