Biomechanics and Strategies of Digging

  • Chapter
  • First Online:
Tuco-Tucos

Abstract

In arid and semiarid ecosystems, digging and burrowing are common behaviors in many mammals looking for shelter, food, thermoregulation, etc. Many rodents, as tuco-tucos, may use both the foreclaws and incisors – according to soil requirements – to accomplish that goal in an effective manner. Although digging represents a low fraction of the daily energy budget, it triggered some highly derived adaptations. Forelimbs in caviomorph scratch-diggers are characterized by highly robust humeri and ulnae, and well-developed bony superstructures. These mechanically advantageous traits have been already found during early ontogeny in Ctenomys –compensating the lower muscular development – and encompass the gradual improvement of digging and burrowing behaviors on those stages. This fact would provide enough time to reach a proper musculoskeletal and behavioral development, to deal with energetic and biomechanical demands. Gross head morphology, instead, has proven to conserve a rodent already-optimized bauplan among caviomorphs, by not showing a more mechanically advantageous masticatory apparatus in tuco-tucos. Their strong bite forces –which cover both tooth-digging and a wide range of social needs – would be a consequence of the hypertrophied and fiber types-wise specialized jaw adduct musculature. Despite corresponding soil reaction forces may injure animals’ skull or teeth, ctenomyid skull geometry, bone distribution, and incisors microstructure evolved to withstand the high stress and abrasion. Thus, yet inconclusively, animal’s performance can be fairly predicted based on biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 103.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 103.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ade M, Ziekur I (1999) The forepaws of the rodents Cryptomys hottentotus (Bathyergidae) and Nannospalax ehrenbergi (Muridae, Spalacinae): phylogenetic and functional aspects. Mitteilungen aus dem Museum für Naturkunde in Berlin/Zoologische Reihe 75:11–17

    Google Scholar 

  • Andino N, Borghi CE, Giannoni SM (2014) Characterization and selection of microhabitat by Microcavia australis (Rodentia: Caviidae): first data in a rocky habitat in the Hyperarid Monte Desert of Argentina. Mammalia 80:71–81

    Google Scholar 

  • Antinuchi CD, Busch C (1992) Burrow structure in the subterranean rodent Ctenomys talarum. Mamm Biol 57:163–168

    Google Scholar 

  • Antinuchi CD, Zenuto RR, Luna F, Cutrera AP, Perissinotti PP, Busch C (2007) Energy budget in subterranean rodents: insights from the tuco tuco Ctenomys talarum (Rodentia: Ctenomyidae). In: Kelt DA, Lessa EP, Salazar-Bravo JA, Patton JL (eds) The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. The University of California Press, Berkeley, pp 111–140

    Google Scholar 

  • Becerra F (2015) Aparato masticatorio en roedores caviomorfos (Rodentia, Hystricognathi): Análisis morfofuncional, con énfasis en el género Ctenomys (Ctenomyidae). Ph.D. dissertation, Universidad Nacional de Mar del Plata. Mar del Plata, Buenos Aires, Argentina

    Google Scholar 

  • Becerra F, Echeverría AI, Vassallo AI, Casinos A (2011) Bite force and jaw biomechanics in the subterranean rodent Talas tuco-tuco (Ctenomys talarum) (Caviomorpha: Octodontoidea). Can J Zool 89:334–342

    Article  Google Scholar 

  • Becerra F, Echeverría AI, Marcos A, Casinos A, Vassallo AI (2012a) Sexual selection in a polygynous rodent (Ctenomys talarum): an analysis of fighting capacity. Zoology 115:405–410

    Article  PubMed  Google Scholar 

  • Becerra F, Vassallo AI, Echeverría AI, Casinos A (2012b) Scaling and adaptations of incisors and cheek teeth in caviomorph rodents (Rodentia, Hystricognathi). J Morphol 273:1150–1162

    Article  PubMed  Google Scholar 

  • Becerra F, Casinos A, Vassallo I (2013) Biting performance and skull biomechanics of a chisel tooth digging rodent (Ctenomys tuconax; Caviomorpha; Octodontoidea). J Exp Zool 319:74–85

    Article  Google Scholar 

  • Becerra F, Echeverría AI, Casinos A, Vassallo AI (2014) Another one bites the dust: bite force and ecology in three caviomorph rodents (Rodentia, Hystricognathi). J Exp Zool 321A:220–232

    Article  Google Scholar 

  • Begall S, Burda H, Schleich CE (2007) Subterranean rodents: News from underground. Springer-Verlag, Berlin

    Google Scholar 

  • Bidau CJ (2015) Family Ctenomyidae Lesson, 1842. Pp. 818–877 in Mammals of South America, Volume 2 Rodents. (J.L. Patton, U.F.J. Pardiñas, and G. D'Elía, eds.). The University of Chicago Press, Chicago

    Google Scholar 

  • Biewener AA (2003) Animal locomotion, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Borges LR, Maestri R, Kubiak BB, Galiano D, Fornel R, de Freitas TRO (2016) The role of soil features in sha** the bite force and related skull and mandible morphology in the subterranean rodents of the genus Ctenomys (Hystricognathi: Ctenomyidae). J Zool 301:108–117

    Article  Google Scholar 

  • Buezas GN, Becerra F, Vassallo AI (2017) Cranial suture complexity in caviomorph rodents (Rodentia;Ctenohystrica). J Morphol 278:1125–1136

    Article  PubMed  Google Scholar 

  • Buezas GN, Becerra F, Echeverría AI, Cisilino A, Vassallo AI (2019) Mandible strength and eometry in relation to bite force: a case study in three caviomorph rodents. J Anat 234:564–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter D, Mikic B, Padian K (1998) Epigenetic mechanical factors in the evolution of long bone epiphyses. Zool J Linnean Soc 123:163–178

    Article  Google Scholar 

  • Currey JD (2006) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Cutrera AP, Antinuchi CD, Mora MS, Vassallo AI (2006) Home-range and activity patterns of the south American subterranean rodent Ctenomys talarum. J Mammal 87:1183–1191

    Article  Google Scholar 

  • Cutrera AP, Mora MS, Antenucci CD, Vassallo AI (2010) Intra- and interspecific variation in home-range size in sympatric tuco-tucos, Ctenomys australis and C. talarum. J Mammal 91:1425–1434

    Article  Google Scholar 

  • De Santis LJM, Moreira GJ, Justo ER (1998) Anatomía de la musculatura branquiomerica de algunas especies de Ctenomys Blainville, 1826 (Rodentia, Ctenomyidae): Caracteres adaptativos. Boletín de la Sociedad de Biología de Concepcion 69:89–107

    Google Scholar 

  • De Santis LM, Moreira GJ, García Esponda CM (2001) Microestructura del esmalte de os incisivos de Ctenomys azarae y C. talarum (Rodentia, Ctenomyidae). Mastozoología Neotropical 8:5–14

    Google Scholar 

  • Dentzien-Dias PC, Figueiredo AEQ (2015) Burrow architecture and burrowing dynamics of Ctenomys in foredunes and paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 439:166–175

    Article  Google Scholar 

  • Druzinsky RE, Doherty AH, De Vree FL (2011) Mammalian masticatory muscles: homology, nomenclature, and diversification. Integr Comp Biol 51:224–234

    Article  PubMed  Google Scholar 

  • Ebensperger LA, Blumstein DT (2006) Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behav Ecol 17:410–418

    Article  Google Scholar 

  • Echeverría AI, Becerra F, Vassallo AI (2014) Postanatal ontogeny of limb proportions and functional indices in the subterranean rodent Ctenomys talarum (Rodentia, Ctenomyidae). J Morphol 275(8):902–913

    Article  PubMed  Google Scholar 

  • Echeverría AI, Biondi LM, Becerra F, Vassallo AI (2015) Postnatal development of subterranean habits in tuco-tucos Ctenomys talarum (Rodentia, Caviomorpha, Ctenomyidae). J Ethol 34(2):107–118

    Article  Google Scholar 

  • Echeverría AI, Becerra F, Buezas GN, Vassallo AI (2017) Bite it forward… bite it better? Incisor procumbency and mechanical advantage in the chisel-tooth and scratch-digger genus Ctenomys (Caviomorpha, Rodentia). Zoology 125:53–68

    Article  PubMed  Google Scholar 

  • Echeverría AI, Abdala V, Longo MV, Vassallo AI (2019) Functional morphology and identity of the thenar pad in the subterranean genus Ctenomys (Rodentia, Caviomorpha). J Anat 235:940–952

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Elissamburu A, De Santis L (2011) Forelimb proportions and fossorial adaptations in the scratch-digging rodent Ctenomys (Caviomorpha). J Mammal 92:683–689

    Article  Google Scholar 

  • Elissamburu A, Vizcaıno S (2004) Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). J Zool 262:145–159

    Article  Google Scholar 

  • Ellison GTH (1995) Is nest building an important component of thermoregulatory behaviour in the pouched mouse (Saccostomus campestris). Physiol Behav 57:693–697

    Article  CAS  PubMed  Google Scholar 

  • Fleming TH, Brown GJ (1975) An experimental analysis of seed hoarding and burrowing behaviour in two species of Costa Rican heteromyid rodents. J Mammal 56:301–315

    Article  Google Scholar 

  • Giannoni SM, Borghi CE, Roig VG (1996) The burrowing behavior of Ctenomys eremophilus (Rodentia, Ctenomyidae) in relation with substrate hardness. Mastozoología Neotropical 3:161–170

    Google Scholar 

  • Hall BK (1978) Developmental and cellular skeletal biology. Academic, New York

    Google Scholar 

  • Herring SW, Lakars TC (1981) Craniofacial development in the absence of muscle contraction. J Craniofac Genet Dev Biol 1:341–357

    Google Scholar 

  • Hickman GC (1985) Surface-mound formation by the tuco-tuco, Ctenomys fulvus (Rodentia: Ctenomyidae), with comments on earthpushing in other fossorial mammals. J Zool 205:385–390

    Article  Google Scholar 

  • Hickman GC, Brown LN (1973) Mound-building behavior of the southeartern pocket gopher (Geomys pinetis). J Mammal 54:786–790

    Article  Google Scholar 

  • Hildebrand M (1985) Digging of quadrupeds. In: Hildebrand M, Bramble M, Liem KF, Wake DB (eds) Functional vertebrate morphology. The Belknap Press of Harvard University Press, Cambridge, MA, pp 89–109

    Chapter  Google Scholar 

  • Hildebrand M (1988) Analysis of vertebrate structure, 3rd. edn. Wiley, New York

    Google Scholar 

  • Hopkins SSB (2005) The evolution of fossoriality and the adaptive role of horns in the Mylagaulidae (Mammalia: Rodentia). Proceedings of the Royal Society of London, B. Biological Sciences 272:1705–1713

    Google Scholar 

  • Jarvis JUM, Sale JB (1971) Burrowing and burrow patterns of east African mole-rats Tachyoryctes, Heliophobius and Heterocephalus. J Zool 163:451–479

    Article  Google Scholar 

  • Justo ER, Bozzolo LE, De Santis LM (1995) Microstructure of the enamel of the incisors of some ctenomyid and octodontid rodents (Rodentia, Caviomorpha). Mastozoología Neotropical 2:43–51

    Google Scholar 

  • Kubiak BB, Galiano D, de Freitas TRO (2017) Can the environment influence species home-range size? A case study on Ctenomys minutus (Rodentia, Ctenomyidae). J Zool 302:171–177

    Article  Google Scholar 

  • Lacey E, Patton JL, Cameron GN (2000) Life underground: the biology of subterranean rodents. Chicago University Press, Chicago

    Google Scholar 

  • Lessa EP (1990) Morphological evolution of subterranean mammals: integrating structural, functional, and ecological perspectives. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley, New York, pp 211–230

    Google Scholar 

  • Lessa EP, Thaeler CS Jr (1989) A reassessment of morphological specializations for digging in pocket gophers. J Mammal 70:689–700

    Article  Google Scholar 

  • Lessa EP, Vassallo AI, Verzi DH, Mora MS (2008) Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biol J Linn Soc 95:267–283

    Article  Google Scholar 

  • Lobo Ribeiro L (2017) Locomoção de Ctenomys talarum (Rodentia: Ctenomyidae): um estudo com câmera de alta velocidade. M.S. thesis, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, Rio de Janeiro, Brazil

    Google Scholar 

  • Longo MV, Díaz AO and Vassallo AI. (2017) Morfología funcional de la musculatura masetérica del roedor subterráneo Ctenomys talarum: histoquímica de tipos de fibras. XXX Jornadas Argentinas de Mastozoología. Bahía Blanca, 14–17 de Noviembre

    Google Scholar 

  • Longo MV, Díaz AO, and Vassallo AI (2018) Histoquímica del músculo masetero de Cavia aperea y su correlación con las demandas funcionales. XIX Congreso de Ciencias Morfológicas y 16 Jornadas de educación de la Sociedad de Ciencias Morfológicas de La Plata. La Plata, 25–26 de Octubre

    Google Scholar 

  • Luna F, Antinuchi CD (2007) Energy and distribution in subterranean rodents: sympatry between two species of the genus Ctenomys. Comp Biochem Physiol 147A:948–954

    Article  CAS  Google Scholar 

  • Luna F, Antinuchi CD, Busch C (2002) Digging energetics in the south American rodent Ctenomys talarum (Rodentia, Ctenomyidae). Can J Zool 80:2144–2149

    Article  Google Scholar 

  • Malizia AI, Busch C (1991) Reproductive parameters and growth in the fossorial rodent Ctenomys talarum (Rodentia: Octodontidae). Mammalia 55:293–306

    Article  Google Scholar 

  • Malizia AI, Vassallo AI, Busch C (1991) Population and habitat characteristics of two sympatric species of Ctenomys (Rodentia: Octodontidae). Acta Theriol 36:87–94

    Article  Google Scholar 

  • Mc Henry HM, Corruccini RS (1975) Distal humerus in hominoid evolution. Folia Primatol 23:227–244

    Article  Google Scholar 

  • McIntosh AF, Cox PG (2016) The impact of gape on the performance of the skull in chisel-tooth digging and scratch digging mole-rats (Rodentia: Bathyergidae). R Soc Open Sci 3:160568

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntosh AF, Cox PG (2019) The impact of digging on the evolution of the rodent mandible. J Morphol 280:176–183

    Article  PubMed  Google Scholar 

  • Mora MS, Olivares AI, Vassallo AI (2003) Size, shape and structural versatility of the skull of the subterranean rodent Ctenomys (Rodentia, Caviomorpha): functional and morphological analysis. Biol J Linn Soc 78:85–96

    Article  Google Scholar 

  • Murray PDF (1936) Bones: a study of the development and structure of the vertebrate skeleton. Cambridge University Press, Cambridge

    Google Scholar 

  • Nevo E (1999) Mosaic evolution of subterranean mammals. Oxford University Press, Oxford

    Google Scholar 

  • Nevo E, Reig OA (eds) (1990) Evolution of subterranean mammals at the organismal and molecular levels. Alan R. Liss, New York

    Google Scholar 

  • Nowlan NC, Prendergast PJ (2005) Evolution of mechanoregulation of bone growth will lead to non-optimal bone phenotypes. J Theor Biol 235:408–418

    Article  PubMed  Google Scholar 

  • Polly PD (2007) Limbs in mammalian evolution. In: Hall BK (ed) Fins into limbs. Evolution, development and transformation. University of Chicago Press, Chicago, pp 245–268

    Google Scholar 

  • Rayfield EJ (2007) Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Rev Earth Planetary Sci 35:541–576

    Article  CAS  Google Scholar 

  • Reichman OJ, Smith SC (1990) Burrows and burrowing behavior by mammals. In: Genoways HH (ed) Current mammalogy. Plenum Press, New York, pp 197–244

    Google Scholar 

  • Reig OA, Busch C, Contreras JR, Ortells MO (1990) An overview of evolution, systematics, population biology, cytogenetics, molecular biology, and speciation in Ctenomys. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley, New York, pp 71–96

    Google Scholar 

  • Rosi MI, Cona MI, Videla F, Puig S, Roig VG (2000) Architecture of Ctenomys mendocinus (Rodentia) burrows from two habitats differing in abundance and complexity of vegetation. Acta Theriol 45:491–505

    Article  Google Scholar 

  • Stein BR (2000) Morphology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. The University of Chicago Press, Chicago, pp 19–61

    Google Scholar 

  • Ubilla M, Altuna C (1990) Analyse de la morphologie de la main chez des espèces de Ctenomys de l’Uruguay (Rodentia, Octodontidae): adaptations au fouissage et implications évolutives. Mammalia 54(1):107–118

    Article  Google Scholar 

  • Ungar PS (2010) Mammal teeth: origin, evolution and diversity. John Hopkins University Press, Baltimore

    Google Scholar 

  • Van Daele P, Herrel A, Adriaens D (2009) Biting performance in teeth-digging African mole-rats (Fukomys, Bathyergidae, Rodentia). Physiol Biochem Zool 82:40–50

    Article  PubMed  Google Scholar 

  • Vassallo AI (1998) Functional morphology, comparative behaviour, and adaptation in two sympatric subterranean rodents genus Ctenomys (Caviomorpha: Octodontidae). J Zool 244:415–427

    Article  Google Scholar 

  • Vassallo AI (2006) Acquisition of subterranean habits in tuco-tucos (Rodentia, Caviomorpha, Ctenomys): role of social transmission. J Mammal 87:939–943

    Article  Google Scholar 

  • Vassallo AI, Verzi DH (2001) Patrones craneanos y modalidades de masticación en roedores caviomorfos (Rodentia, Caviomorpha). Bol Soc Biol Concepc 72:139–145

    Google Scholar 

  • Verzi DH (2002) Patrones de evolución morfológica en Ctenomyinae (Rodentia, Octodontidae). Mastozoología Neotropical 9:309–328

    Google Scholar 

  • Verzi DH, Álvarez A, Olivares AI, Morgan CC, Vassallo AI (2010) Ontogenetic trajectories of key morphofunctional cranial traits in south American subterranean ctenomyid rodents. Journal o Mammalogy 91:1508–1516

    Article  Google Scholar 

  • Vieytes EC, Morgan CC, Verzi DH (2007) Adaptive diversity of incisor enamel microstructure in south American burrowing rodents (family Ctenomyidae, Caviomorpha). J Anat 211:296–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Vleck D (1979) The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol Zoology 52:122–136

    Article  Google Scholar 

  • Vogel S (2013) Comparative biomechanics: Life’s physical world, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Whitford WG, Kay RF (1999) Bioperturbation by mammals in deserts: a review. J Arid Environ 41:203–230

    Article  Google Scholar 

  • Woods CA (1972) Comparative myology of jaw, hyoid, and pectoral appendicular regions of new and Old World hystricomorph rodents. Bull Am Mus Nat Hist 147:115–198

    Google Scholar 

  • Young NM, Hallgrímsson B, Jr Garland T (2009) Epigenetic effects on integration of limb lengths in a mouse model: selective breeding for high voluntary locomotor activity. Evol Biol 36:88–99

    Article  Google Scholar 

  • Zelová J, Šumbera R, Okrouhlík J, Burda H (2010) Cost of digging is determined by intrinsic factors rather than by substrate quality in two subterranean rodent species. Physiol Behav 99(1):54–58

    Article  PubMed  CAS  Google Scholar 

  • Zenuto RR, Vassallo AI, Busch C (2002) Comportamiento social y reproductivo del roedor subterráneo solitario Ctenomys talarum (Rodentia: Ctenomyidae) en condiciones de semicautiverio. Rev Chil Hist Nat 75:165–177

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editors for the invitation to contribute to this collective volume on Ctenomys evolution. This study was carried out under the support of the National Council for Scientific and Technical Research of Argentina (CONICET) (grants PIP 2014–2016 N° 11220130100375 and UE N°0073) and National University of Mar del Plata (grants EXA918/18 and ING516/18). We thank colleagues from various countries and laboratories for the friendly exchange of knowledge about an underground friend in common, the Tuco-Tuco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo I. Vassallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vassallo, A.I. et al. (2021). Biomechanics and Strategies of Digging. In: Freitas, T.R.O.d., Gonçalves, G.L., Maestri, R. (eds) Tuco-Tucos. Springer, Cham. https://doi.org/10.1007/978-3-030-61679-3_7

Download citation

Publish with us

Policies and ethics

Navigation