Three-Layer Weighted Fuzzy Support Vector Regressions for Emotional Intention Understanding

  • Chapter
  • First Online:
Emotion Recognition and Understanding for Emotional Human-Robot Interaction Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 926))

  • 608 Accesses

Abstract

A three-layer weighted fuzzy support vector regression (TLWFSVR) model is proposed for understanding human intention, and it is based on the emotion-identification information in human-robot interaction. TLWFSVR model consists of three layers, including adjusted weighted kernel fuzzy c-means (AWKFCM) for data clustering, fuzzy support vector regressions (FSVR) for information understanding, and weighted fusion for intention understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Noohi, M. Zefran, J.L. Patton, A model for human-human collaborative object manipulation and its application to human-robot interaction. IEEE Trans. Robot. 32(4), 880–896 (2016)

    Article  Google Scholar 

  2. K.K. Roudposhti, U. Nunes, J. Dias, Probabilistic social behavior analysis by exploring body motion-based patterns. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1679–1691 (2016)

    Article  Google Scholar 

  3. K. Zheng, D.F. Glas, T. Kanda, H. Ishiguro, N. Hagita, Designing and implementing a human-robot team for social interactions. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 843–858 (2013)

    Article  Google Scholar 

  4. K. Pitsch, T. Dankert, R. Gehle, S. Wrede, Referential practices. Effects of a museum guide robot suggesting a deictic ‘repair’ action to visitors attempting to orient to an exhibit, in Proceedings of IEEE International Symposium on Robot and Human Interactive Communication, NY, USA, pp. 225–231 (2016)

    Google Scholar 

  5. T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, N. Hagita, A communication robot in a shop** mall. IEEE Trans. Robot. 26(5), 897–913 (2010)

    Article  Google Scholar 

  6. J. Fasola, M. Mataric, Using socially assistive human-robot interaction to motivate physical exercise for older adults. Proc. IEEE 100(8), 2512–2526 (2012)

    Article  Google Scholar 

  7. J.E. Young, J. Sung, A. Voida, E. Sharlin, T. Igarashi, H.I. Christensen, R.E. Grinter, Evaluating human-robot interaction. Int. J. Soc. Robot. 3(1), 53–67 (2011)

    Article  Google Scholar 

  8. C. Zhang, H. Zhang, L.E. Parker, Feature space decomposition for effective robot adaptation, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 441–448 (2015)

    Google Scholar 

  9. V.C. Meola, D. Caligiore, V. Sperati, L. Zollo, A.L. Ciancio, F. Taffoni, E. Guglielmelli, G. Baldassarre, Interplay of rhythmic and discrete manipulation movements during development: a policy-search reinforcement-learning robot model. Proc. IEEE Trans. Cogn. Dev. Syst. 8(3), 152–170 (2016)

    Article  Google Scholar 

  10. D. Hu, Y. Gong, B. Hannaford, E.J. Seibel, Semi-autonomous simulated brain tumor ablation with RAVENII surgical robot using behavior tree, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, pp. 3868–3875 (2015)

    Google Scholar 

  11. A.M.C. Smith, C. Yang, H. Ma, P. Culverhouse, A. Cangelosi, E. Burdet, Novel hybrid adaptive controller for manipulation in complex perturbation environments. PLoS One 10(6), e0129281 (2015)

    Google Scholar 

  12. S. Qiu, Z. Li, W. He, L. Zhang, C. Yang, C.Y. Su, Brain – machine interface and visual compressive sensing-based teleoperation control of an exoskeleton robot. IEEE Trans. Fuzzy Syst. 25(1), 58–69 (2017)

    Google Scholar 

  13. L.F. Chen, Z.T. Liu, M. Wu, F.Y. Dong, Y. Yamazaki, K. Hirota, Multi-robot behavior adaptation to local and global communication atmosphere in humans-robots interaction. J. Multimodal User Interfaces 8(3), 289–303 (2014)

    Article  Google Scholar 

  14. Z. Li, C. Yang, C.Y. Su, S. Deng, F. Sun, W. Zhang, Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1056 (2015)

    Article  Google Scholar 

  15. A. Geiger, M. Lauer, R. Urtasun, A generative model for 3D urban scene understanding from movable platforms, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, pp. 1945–1952 (2011)

    Google Scholar 

  16. M.J. Roberson, J. Bohg, G.L. Skantze, J. Gustafson, R. Carlson, B. Rasolzadeh, D. Kragic, Enhanced visual scene understanding through human-robot dialog, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, pp. 3342–3348 (2011)

    Google Scholar 

  17. M.V. Bergh, D. Carton, R.D. Nijs, N. Mitsou, C. Landsiedel, K. Kuehnlenz, D. Wollherr, L.V. Gool, M. Buss, Real-time 3D hand gesture interaction with a robot for understanding directions from humans, in Proceedings of IEEE International Symposium on Robot and Human Interactive Communication, Atlanta, USA, pp. 357–362 (2011)

    Google Scholar 

  18. C. Mohiyeddini, R. Pauli, S. Bauer, The role of emotion in bridging the intention behaviour gap: the case of sports participation. Psychol. Sport. Exerc. 10(2), 226–234 (2009)

    Article  Google Scholar 

  19. C. Cortes, V.N. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  20. H. Yu, J. Kim, Y. Kim, S. Hwang, Y.H. Lee, An efficient method for learning nonlinear ranking SVM functions. Inf. Sci. 209, 37–48 (2012)

    Google Scholar 

  21. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 2000)

    Google Scholar 

  22. D. Song, D. Tao, Biologically inspired feature manifold for scene classification. IEEE Trans. Image Process. 19(1), 174–184 (2010)

    Article  MathSciNet  Google Scholar 

  23. B. Andreas, A.W. Jamie, G. Hans, T. Gerhard, Eye movement analysis for activity recognition using electrooculography. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 741–753 (2011)

    Article  Google Scholar 

  24. W. Zhao, J. Zhang, K. Li, An efficient LS-SVM-based method for fuzzy system construction. IEEE Trans. Fuzzy Syst. 23(3), 627–643 (2015)

    Article  Google Scholar 

  25. L. Bottou, V.N. Vapnik, Local learning algorithms. Neutral Comput. 4(6), 888–900 (1992)

    Article  Google Scholar 

  26. C.F. Juang, C.D. Hsieh, A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization. IEEE Trans. Fuzzy Syst. 20(2), 372–384 (2012)

    Article  Google Scholar 

  27. X.X. Zhang, Y. Jiang, H.X. Li, S.Y. Li, SVR learning-based spatiotemporal fuzzy logic controller for nonlinear spatially distributed dynamic systems. IEEE Trans. Neural Netw. Learn. Syst. 24(3), 1635–1647 (2013)

    Article  Google Scholar 

  28. L.F. Chen, Z.T. Liu, M. Wu, M. Ding, F.Y. Dong, K. Hirota, Emotion-age-gender-nationality based intention understanding in human-robot interaction using two-layer fuzzy support vector regression. Int. J. Soc. Robot. 7(5), 709–729 (2015)

    Article  Google Scholar 

  29. M. Moavenian, H. Khorrami, A qualitative comparison of artificial neural networks and support vector machines in ECG arrhythmias classification. Expert Syst. Appl. 37(4), 3088–3093 (2010)

    Article  Google Scholar 

  30. K.P. Lin, A novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 22(5), 1074–1087 (2014)

    Article  Google Scholar 

  31. D.D. Nguyen, L.T. Ngo, Multiple kernel interval type-2 fuzzy c-means clustering, in Proceedings of IEEE International Conference on Fuzzy Systems, Hyderabad, India, pp. 1–8 (2013)

    Google Scholar 

  32. W.M. Dong, F.S. Wong, Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets Syst. 21(2), 183–199 (1987)

    Article  MathSciNet  Google Scholar 

  33. D. Keltner, J. Haidt, Social functions of emotions at four levels of analysis. Cogn. Emot. 13(5), 505–521 (1999)

    Article  Google Scholar 

  34. A. Shafi, W. Vishanth, Understanding citizens’ behavioral intention in the adoption of e-government services in the state of Qatar, in Proceedings of European Conference on Information Systems, Verona, Italy (2009)

    Google Scholar 

  35. R.O. Orji, Impact of gender and nationality on acceptance of a digital library: an empirical validation of nationality based UTAUT using SEM. J. Emerg. Trends Comput. Inf. Sci. 1(2), 68–79 (2010)

    Google Scholar 

  36. C. Holland, R. Hill, The effect of age, gender and driver status on pedestrians’ intentions to cross the road in risky situations intentions to cross the road in risky situations. Accid. Anal. Prev. 39(2), 224–237 (2007)

    Article  Google Scholar 

  37. G. Farchi, F. Fidanza, S. Giampaoli, S. Mariotti, A. Menotti, Alcohol and survival in the Italian rural cohorts of the seven countries study. Int. J. Epidemiol. 29, 667–671 (2000)

    Google Scholar 

  38. K. Hirota, F.Y. Dong, Development of mascot robot system in NEDO project, in Proceedings of International IEEE Conference on Intelligent Systems, Varna, Bulgaria, pp. 38–44 (2008)

    Google Scholar 

  39. UCI Machine Learning Repository Data Sets, Sentence classification data set. UC Irvine, Irvine, CA, USA. Available: http://archive.ics.uci.edu/ml/datasets.html

  40. L. Hubert, P. Arabie, Comparing partitions. J. Classif. 2, 193–218 (1985)

    Google Scholar 

  41. L.F. Chen, M. Wu, M. Zhou, J. She, K. Hirota, Dynamic emotion understanding using FCM based SVR in human-robot interaction, in Proceedings of the 35th Chinese Control Conference, Chengdu, China, pp. 7064–7069 (2016)

    Google Scholar 

  42. J. Lafaye, C. Collette, P.B. Wieber, Model predictive control for tilt recovery of an omnidirectional wheeled humanoid robot, in Proceedings of IEEE International Conference on Robotics and Automation, Seattle, USA, pp. 5134–5139 (2015)

    Google Scholar 

  43. A.D. Ames, Human-inspired control of bipedal walking robots. IEEE Trans. Autom. Control 59(5), 1115–1130 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luefeng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, L., Wu, M., Pedrycz, W., Hirota, K. (2021). Three-Layer Weighted Fuzzy Support Vector Regressions for Emotional Intention Understanding. In: Emotion Recognition and Understanding for Emotional Human-Robot Interaction Systems. Studies in Computational Intelligence, vol 926. Springer, Cham. https://doi.org/10.1007/978-3-030-61577-2_9

Download citation

Publish with us

Policies and ethics

Navigation