Microfossil Shells Are Carbon Story Tellers: Microfossil Communities: First Responders to Environmental Impacts

  • Chapter
  • First Online:
Benthic Foraminiferal Ecology

Abstract

Most microfossil organisms are visible only under a microscope and only a few of them are the cause of diseases. We all depend on microorganisms in the environment, because they recycle matter in nature, transforming complex compounds into simpler ones readily absorbed by others. “The storytellers of space and time” have particularities and habits, which tell pieces of the environmental puzzle in the present time and that of the past, because they respond quickly to changes in abiotic variables (temperature, oxygenation, pH, geoproperties) linked to abrupt cooling or warming in oceans worldwide. Extinction and recovery events with little migratory power recorded by microfossils illustrates the role of climate and oceanographic changes that drive the short and long-term successional changes in ocean ecosystems. Their sensitivity to natural changes, pollution or contamination, and the occurrence or absence of opportunistic species unravels dynamic and interesting data. This data shows that microfossil communities inter and intra competition patterns exist temporally and spatially, and is easily recorded in any environmental disturbance. These tiny beautifully articulated shells, of the thecamoebian “Freshwater Finders”, ostracode, the crustacean group of “predators in space and time”, nanofossils “the tiniest paleo watches”, radiolarians “the delicate sedimentary rock fairytale”, and the diatoms as “The beautifully done silicate factory”, and the last but not the least, the planktonic and benthic foraminifera as the “Glacial and interglacial calcareous factories” are all different actors on the stage. Planktonic are the “Big Ben of time”, and benthic are the “Small giants of show and tell in space and time”. All microfossils shells are proxies that provide opportunities to evaluate cycles of the “changing world” of marine communities today and into past millions of years. They clearly explain climate and environment since their abundance in the sediment corresponds to past fluctuations over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson C (1997) Transfer function vs. modern analog technique for estimating Pliocene Sea-surface temperatures based on planktic foraminiferal data, western equatorial Pacific Ocean. J Foraminifer Res 27(2):123–132

    Article  CAS  Google Scholar 

  • Bijma J, Erez J, Hemleben C (1990a) Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers. J Foraminifer Res 20(2):117–127

    Article  Google Scholar 

  • Bijma J, Faber WW, Hemleben C (1990b) Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. J Foraminifer Res 20(2):95–116

    Article  Google Scholar 

  • Boltovskoy E (1973) Daily vertical migration and absolute abundance of living planktonic foraminifera. J Foraminifer Res 3(2):89–94

    Article  Google Scholar 

  • Boudreau C, Heath E, Seuntjens J, Ballivy O, Parker W (2005) IMRT head and neck treatment planning with a commercially available Monte Carlo based planning system. Phys Med Biol 50(5):879

    Article  CAS  Google Scholar 

  • Bradshaw JS (1959) Ecology of living planktonic foraminifera in the north and equatorial Pacific Ocean. Contrib Cushman Found Foram Res 10:25–64

    Google Scholar 

  • Conan SH, Ivanova EM, Brummer GJ (2002) Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Mar Geol 182(3–4):325–349

    Article  CAS  Google Scholar 

  • Emiliani C (1954a) Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. Am J Sci 252(3):149–158

    Article  Google Scholar 

  • Emiliani C (1954b) Temperatures of Pacific bottom waters and polar superficial waters during the tertiary. Science 119(3103):853–855

    Article  CAS  Google Scholar 

  • Emiliani C (1956) Oligocene and Miocene temperatures of the equatorial and subtropical Atlantic Ocean. J Geol 64(3):281–288

    Article  CAS  Google Scholar 

  • Ericson DB (1959) Coiling direction of Globigerina pachyderma as a climatic index. Science 130(3369):219–220

    Article  CAS  Google Scholar 

  • Ewing M, Ericson DB, Heezen B, Worzel J, Wollin G (1954) Exploration of the deep-sea floor

    Google Scholar 

  • Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421(6921):354–357

    Article  CAS  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194(4270):1121–1132

    Article  CAS  Google Scholar 

  • Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera

    Google Scholar 

  • Hemleben C, Spindler M, Anderson OR (2012) Modern planktonic foraminifera. Springer Science and Business Media, Berlin

    Google Scholar 

  • Kawahata H, Nishimura A, Gagan MK (2002) Seasonal change in foraminiferal production in the western equatorial Pacific warm pool: evidence from sediment trap experiments. Deep-Sea Res II Top Stud Oceanogr 49(13–14):2783–2800

    Article  CAS  Google Scholar 

  • Kumar R, Varandani D, Mehta BR, Singh VN, Wen Z, Feng X, Müllen K (2011) Fast response and recovery of hydrogen sensing in Pd–Pt nanoparticle–graphene composite layers. Nanotechnology 22(27):275719

    Article  Google Scholar 

  • Lowe JJ, Walker MJC (1997) Temperature variations in NW Europe during the last glacial-interglacial transition (14-9^ 1^ 4C ka BP) based upon the analysis of coleopteran assemblages-the contribution of professor GR Coope. In: Quaternary Proceedings. Wiley, New York, pp 165–176

    Google Scholar 

  • Medioli FS, Scott DB (1983) Holocene Arcellacea (thecamoebians) from eastern Canada (no. 21). Cushman Foundation for Foraminiferal Research, Washington, DC

    Google Scholar 

  • Medioli FS, Scott DB (1988) Lacustrine thecamoebians (mainly arcellaceans) as potential tools for palaeo limnological interpretations. Palaeogeogr Palaeoclimatol Palaeoecol 62(1–4):361–386

    Article  Google Scholar 

  • Morey AE, Mix AC, Pisias NG (2005) Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables. Q Sci Rev 24(7–9):925–950

    Article  Google Scholar 

  • Murray JW (1973) Distribution and ecology of living benthic Foraminiferids. Heinemann Educational Books, London, 274 p

    Google Scholar 

  • Patterson RT, Kumar A (2002) A review of current testate rhizopod (thecamoebian) research in Canada. Palaeogeogr Palaeoclimatol Palaeoecol 180(1–3):225–251

    Article  Google Scholar 

  • Peeters FJ, Acheson R, Brummer GJA, De Ruijter WP, Schneider RR, Ganssen GM, Ufkes E, Kroon D (2004) Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430(7000):661–665

    Article  CAS  Google Scholar 

  • Riveiros NV, Babalola AO, Boudreau RE, Patterson RT, Roe HM, Doherty C (2007) Modern distribution of salt marsh foraminifera and the camoebians in the Seymour–Belize inlet complex, British Columbia, Canada. Mar Geol 242(1–3):39–63

    Article  Google Scholar 

  • Rosenthal Y, Holbourn A, Kulhanek D, Expedition 363 Scientists (2017) Expedition 363 preliminary report: western Pacific warm pool. In: Proceedings of the International Ocean Discovery Program, p 363

    Google Scholar 

  • Rutherford S, D’Hondt S, Prell W (1999) Environmental controls on the geographic distribution of zooplankton diversity. Nature 400(6746):749–753

    Article  CAS  Google Scholar 

  • Schiebel R, Hemleben C (2005) Modern planktic foraminifera. Paläontol Z 79(1):135–148

    Article  Google Scholar 

  • Schiebel R, Hiller B, Hemleben C (1995) Impacts of storms on recent planktic foraminiferal test production and CaCO3 flux in the North Atlantic at 47 N, 20 W (JGOFS). Mar Micropaleontol 26(1–4):115–129

    Article  Google Scholar 

  • Schiebel R, Bijma J, Hemleben C (1997) Population dynamics of the planktic foraminifer Globigerina bulloides from the eastern North Atlantic. Deep Sea Res Pt 1 Oceanogr Res Pap 44(9):1701–1713

    Article  Google Scholar 

  • Schmidt DN, Thierstein HR, Bollmann J (2004a) The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 212(1–2):159–180

    Article  Google Scholar 

  • Schmidt DN, Renaud S, Bollmann J, Schiebel R, Thierstein HR (2004b) Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Mar Micropaleontol 50(3–4):319–338

    Article  Google Scholar 

  • Schott W (1935) Die Foraminiferen in dem äquatorialen Teil des atlantischen Ozeans. Deutsche Atlantische Expedition 6:411–616

    Google Scholar 

  • Shackleton NJ, Opdyke ND (1973) Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 10 5 year and 10 6 year scale. Quatern Res 3(1):39–55

    Article  CAS  Google Scholar 

  • Spindler M, Hemleben C, Bayer U, Bé AWH, Anderson OR (1979) Lunar periodicity of reproduction in the planktonic foraminifer Hastigerina pelagica. Marine Ecology Progress Series, pp 61–64

    Google Scholar 

  • Thiede J (1975) Distribution of foraminifera in surface waters of a coastal upwelling area. Nature 253(5494):712–714

    Article  Google Scholar 

  • Van Hengstum PJ, Reinhardt EG, Boyce JI, Clark C (2007) Changing sedimentation patterns due to historical land-use change in Frenchman’s bay, Pickering, Canada: evidence from high-resolution textural analysis. J Paleo 37(4):603–618

    Article  Google Scholar 

  • Woodland WA, Charman DJ, Sims PC (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. Holocene 8(3):261–273

    Article  Google Scholar 

  • Zaric S, Donner B, Fischer G, Mulitza S, Wefer G (2005) Sensitivity of planktic foraminifera to sea surface temperature and export production as derived from sediment trap data. Mar Micropaleontol 55(1–2):75–105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beck Eichler, P.P., Barker, C.P. (2020). Microfossil Shells Are Carbon Story Tellers: Microfossil Communities: First Responders to Environmental Impacts. In: Benthic Foraminiferal Ecology. Springer, Cham. https://doi.org/10.1007/978-3-030-61463-8_3

Download citation

Publish with us

Policies and ethics

Navigation