Laboratory Portable X-Ray Fluorescence (pXRF) Systems Design and Characteristics for In Situ Cultural Heritage Studies

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

Laboratory portable X-ray fluorescence (pXRF) systems are widely applied for cultural heritage studies. This chapter will deal with some applications such as studies of churches mural paintings, studies of gold and silver historical and archaeological objects, measurement of elemental composition and multilayer thickness by Kα/Kβ ratios of metals and pigments of objects in the cultural heritage, paintings examination, in situ rock art analysis, and studies of archaeological ceramics and obsidians. Laboratory systems are very versatile since their collimation and positioning of the excitation/detection system can be adapted to many different geometries of the samples, which can be a small coin or a statue of human size, a large painting, or a complex metal object composed of many different parts, as well as change the X-ray tube for measurements with different tube anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Frahm E, Doonan RCP (2013) The technological versus methodological revolution of portable XRF in archaeology. J Archaeol Sci 40:1425–1434

    Google Scholar 

  2. Potts PJ, West M (2008) Portable X-ray fluorescence spectrometry – capabilities for in situ analysis. RSC Publishing

    Google Scholar 

  3. Lindgren ES (2002) X-ray fluorescence analysis: energy dispersive. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  4. Van Grieken RE, Markowicz AA (2002) Handbook of X-ray spectrometry, 3rd edn. Marcel Dekker Inc, New York

    Google Scholar 

  5. Cesareo R et al (2008) Portable systems for energy-dispersive X-Ray fluorescence analysis of works of art. In: Potts PJ, West M (eds) Portable X-ray fluorescence spectrometry: capabilities for in situ analysis. Published by the Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  6. Valadas S, Candeias A, Mirão J, Tavares D, Coroado J, Simon R, Silva AS, Gil M, Guilherme A, Carvalho ML (2011) Study of mural paintings using in situ XRF, confocal synchrotron-μ-XRF, μ-XRD, optical microscopy, and SEMEDS – the case of the Frescoes from Misericordia Church of Odemira. Microsc Microanal 17:702–709. https://doi.org/10.1017/S1431927611000195

    Article  Google Scholar 

  7. Čechák T, Gerndt J, Musílek L, Kopecká I (2001) Analysis of fresco paintings by X-ray fluorescence method. Radiat Phys Chem 61:717–719

    Google Scholar 

  8. Pestana JA, Caldeira AT, Carvalho ML, Dias L, Mirão J, Candeias A (2015) Are they fresco paintings? Technical and material study of Casas Pintadas of Vasco da Gama house in Évora (Southern Portugal). X-Ray Spectrom. https://doi.org/10.1002/xrs.2593. (wileyonlinelibrary.com)

  9. Parreira PS, Melquiades FL, Lopes F, Oliveira VF, Appoloni CR (2019) Sistema portátil de Fluorescência de Raios X. BR Patent 0801331- 4

    Google Scholar 

  10. Rizzo M, Appoloni CR, Parreria PS (2007) Procedimento de restauro para remoção de sais insolúveis sobre pinturas murais na Igreja da Paróquia Imaculada Conceição (São Paulo, SP) com acompanhamento por equipamento portátil de EDXRF. Rev Bras Arqueometria, Restauração e Conservação 1(5):246–251. in Portuguese

    Google Scholar 

  11. Appoloni CR, Parreira PS, Rizzo M (2007) Aplicação de um equipamento portátil de EDXRF no acompanhamento dos trabalhos de restauro de pintura murais na Igreja da Paróquia Imaculada Conceição (São Paulo, SP). Revista Brasileira de Arqueometria, Restauração e Conservação 1(4):161–164. in Portuguese

    Google Scholar 

  12. Parreira PS., Teixeira LR, Lopes F (2012) Qualitative analysis of pigments in the internal decoration of the Imaculada Conceição Basilica – Botafogo/RJ. In: 2012 international symposium on radiation physics – ISRP 2012, 2012, Rio de Janeiro – Brasil. Program of 2012, International symposium on radiation physics – ISRP 2012. Project Media, Rio de Janeiro, p 1

    Google Scholar 

  13. Cesareo R et al (2013) Multilayered artifacts in the pre-Columbian metallurgy from the North of Peru. Appl Phys A Mater Sci Process Berl 113:889–893

    Google Scholar 

  14. Yu A et al (2001) Correction of X-ray absorption spectra for thickness inhomogeneity and fluorescence of sample. Nucl Instrum Methods Phys Res Sect A Amsterdam 470:278–282

    Google Scholar 

  15. Raj S, Padhi HC, Polasi M (1999) Influence of alloying effect on Kβ/ Kα X-ray intensity ratios of V and Ni in VxNi1-x alloys. Nucl Inst Methods Phys Res B, Amsterdam 155:143–152

    Google Scholar 

  16. Ferrero JL, Roldán MA, Navarro E (1999) X-ray fluorescence analysis of yellow pigments in altarpieces by Valencia artists of the XV and XVI centuries. Nucl Instrum Methods Phys Res Sect A, Amsterdam 428:868–873

    Google Scholar 

  17. Trojek T, Cechak T, Musilek L (2010) Recognition of pigment layers in illuminated manuscripts by means of Kα/Kβ and Lα/Lβ ratios of characteristic X-rays. Appl Radiat Isot New York 68(4):871–874

    Google Scholar 

  18. Cesareo R et al (2004) Portable equipment for energy dispersive X-ray fluorescence analysis of Giotto’s frescoes in the chapel of the Scrovegni. Nucl Instrum Methods Phys B, Amsterdam 213:703–770

    Google Scholar 

  19. Cesareo R et al (2011) Evolution of pre-Columbian metallurgy from the north of Peru studied with a portable non-invasive equipment using energy-dispersive X-ray fluorescence. J Mater Sci Eng B 1, Pittsburgh, pp 48–81

    Google Scholar 

  20. Ruberto C et al (2016) Imaging study of Raffaello’s “La Muta” by a portable XRF spectrometer. Microchem J 126:63–69

    Google Scholar 

  21. Antunes V et al (2016) Calcium sulfate fillers and binders in Portuguese 15th and 16th centuries: ground layers from a family painting workshop - study by multianalytical spectroscopic techniques. Microchem J 125:290–298

    Google Scholar 

  22. Appoloni CR, Blonski MS, Parreira PS, Souza LAC (2007) Study of the pigments elementary chemical composition of a painting in process of attribution to Gainsborough employing a portable X-rays fluorescence system. Nucl Instrum Methods Phys Res A 580:710–713

    Google Scholar 

  23. Ravaud E et al (2009) Hyménée travesti assistant à une danse en l’honneur de Priape: étude scientifique. In: Poussin – Restauration, Pierre Curie Coordinateur Scientifique, ed. Presses Officielles d’État de São Paulo. ISBN 978-85-7060-744-7, Portuguese-French edition, pp 81–92

    Google Scholar 

  24. Blonski MS, Appoloni CR (2014) Pigments analysis and gold layer thickness evaluation of polychromy on wood objects by PXRF. Appl Radiat Isot 89:47–52

    Google Scholar 

  25. Klockenkamper R, Von Bohlen A, Moens L (2000) Analysis of pigments and inks on oil paintings and historical manuscripts using total reflection X-ray fluorescence spectrometry. X-Ray Spectrom 29:119–129

    Google Scholar 

  26. Appoloni CR et al (2011) The first in situ portable Raman and XRF study of rock art in South America: paintings from Morro Azul caves in Paraná State, Brazil. In: 6th International congress on the application of Raman Spectroscopy in Art and Archaeology, 2011, Parma, Italy. RAA 2011 – Book of Abstracts. TIMEO Editore, Bologna, v. único, p 98

    Google Scholar 

  27. Appoloni CR, Fabio L, Bruno MA (2013) Analysis of the painting ‘Moema’ by PXRF, TXRF and Raman Spectroscopy. In: Moema – restauração / restoration,1 edn. Comunique Editorial, São Paulo, pp 59–78

    Google Scholar 

  28. Rutherford JG, Stout G (1966) Painting materials – a short encyclopaedia. Dover Publications, Inc., New York

    Google Scholar 

  29. Bandeira AM (2008) Ocupações humanas pré-históricas no litoral maranhense: um estudo arqueológico sobre o sambaqui do Bacanga na Ilha de São Luís- Maranhão. Master thesis in Archaeology, Universidade de São Paulo, Brasil. https://doi.org/10.11606/D.71.2008.tde-26092008-145347., http://www.teses.usp.br/teses/disponiveis/71/71131/tde-26092008-145347/pt-br.php. Accessed May 2019

  30. Latini RM, Bellido AV Jr, Vasconcellos MBA, Dias OF Jr (2001) Classificação de cerâmicas arqueológicas das Bacia Amazônica. Quim Nova 24:724–729

    Google Scholar 

  31. Willard H, Merritt L, Dean J (1981) Instrumental methods of analysis. Van Nostrand, Company, Princeton, pp 67–371

    Google Scholar 

  32. Appoloni CR et al (2001) EDXRF study of Tupi-Guarani archaeological ceramics. Radiat Phys Chem 61:711–712

    Google Scholar 

  33. Romano FP, Pappalardo L, Masini N, Pappalardo G, Rizzo F (2011) The compositional and mineralogical analysis of fired pigments in Nasca pottery from Cahuachi (Peru) by the combined use of the portable PIXE-alpha and portable XRD techniques. Microchem J 99:449–453

    Google Scholar 

  34. Ikeoka RA, Appoloni CR, Parreira PS, Lopes F, Bandeira AM (2012) PXRF and multivariate statistics analysis of pre-colonial pottery from northeast of Brazil. X-Ray Spectrom 41:12–15

    Google Scholar 

  35. Gueli AM, Delfino A, Nicastro E, Pasquale S, Politi G, Privitera A, Spampinato S, Stella G (2017) Investigation by pXRF of Caltagirone Pottery samples produced in laboratory. Open Archaeol 3:235–246

    Google Scholar 

  36. Johnson J (2014) Accurate measurements of low Z elements in sediments and archaeological ceramics using portable X-ray fluorescence (PXRF). J Archaeol Method Theory 21:563–588

    Google Scholar 

  37. Van Espen P, Nullens H, Adams F (1977) A computer analysis of X-ray fluorescence spectra. Nucl Instrum Methods 142–243

    Google Scholar 

  38. Gilat A (2011) MATLAB: an introduction with applications, 4nd edn. Wiley

    Google Scholar 

  39. Bellot-Gurlet L, Dorighel O, Poupeau G (2008) Obsidian provenance studies in Colombia and Ecuador: obsidian sources revisited, Elsevier. J Archaeol Sci 35:272–289

    Google Scholar 

  40. Duttine M et al (2007) Técnicas alternativas para estudos de proveniência de obsidianas arqueológicas equatorianas. Revista Brasileira de Arqueometria, Restauração e Conservação 1(5):271–274

    Google Scholar 

  41. Negash A, Shackley MS (2006) Geochemical provenance of obsidian artefacts from the MSA site of PORC epic. Archaeometry 48:1–12

    Google Scholar 

  42. Milazzo M (2003) Radiation applications in art and archaeometry X-ray fluorescence applications to archaeometry. Possibility of obtaining non-destructive quantitative analyses. Elsevier

    Google Scholar 

  43. Bigazzi G, Hadler NJC, Iunes PJ, Osório Araya AM (2005) Fission-track dating of South American natural glasses: an overview. Radiat Meas 39:585–594

    Google Scholar 

  44. Ford B, Macleod I, Haydock P (1994) Rock art pigments from Kimberley region of Western Australia: identification of the minerals and conversion mechanisms. Stud Conserv 39(1):57–69

    Google Scholar 

  45. Stuart BH, Thomas PS (2017) Pigment characterization in Australian rock art: a review of modern instrumental methods of analysis. Herit Sci 5:10. https://doi.org/10.1186/s40494-017-0123-8

    Article  Google Scholar 

  46. Edwards HGM, Drummond L, Russ J (1998) Fourier-transform Raman spectroscopic study of pigments in native American Indian rock art: Seminole Canyon. Spectrochim Acta Part A 54:1849

    Google Scholar 

  47. Tournié A, Prinsloo LC, Paris C, Colomban P, Smith BW (2011) The first in situ Raman spectroscopic study of San rock art in South Africa: procedures and preliminary results. J Raman Spectrosc 42:399–406. https://doi.org/10.1002/jrs.2682

    Article  Google Scholar 

  48. Colomban P (2017) On-site Raman study of artwork: procedure and illustrative examples. J Raman Spectrosc 49(6):921–934

    Google Scholar 

  49. Huntley J (2012) Taphonomy or paint recipe: in situ portable x-ray fluorescence analysis of two anthropomorphic motifs from the Woronora Plateau, New South Wales. Aust Archaeol 75:78–94

    Google Scholar 

  50. Lopes F, Parellada C, Gomes P, Appoloni C, Macario K, Carvalho C, Pessenda L (2017) Investigating a Rock Art Site in Paraná State, South of Brazil. Radiocarbon 59:1691–1703

    Google Scholar 

  51. Appoloni CR et al (2009) In situ pigments study of rock art at Jaguariaíva 1 archaeological site (Paraná, Brazil) by portable energy dispersive X-ray fluorescence (pXRF). In: International Congress of Rock Art, 2009, Parque Nac. Serra da Capivara. Abstracts of the International Congress of Rock Art. v. único, pp 1–1

    Google Scholar 

  52. Appoloni et al (2010) Rock Art at Jaguariaiva Archaeological Site (Paraná, Brazil): In Situ Pigments Study by Portable Energy Dispersive X-Ray Fluorescence (PXRF) In: 2nd Latin-American Symposium on Physical and Chemical Methods in Archaeology, Art and Cultural Heritage Conservation –- LASMAC2009, 2010, Cancun, Mexico. LASMAC & IMRC 2009 – Selected papers, Ganzáles Offset S.A. de C.V., Ecatepec, Mexico, pp 1–3

    Google Scholar 

  53. Appoloni CR, Lopes F, Melquiades FL, Parellada CI (2010) In situ pigments study of rock art at Jaguariaíva 1 archaeological site (Paraná, Brazil) by portable energy dispersive X-ray fluorescence (pXRF). FUMDHAMentos IX:555–562

    Google Scholar 

  54. Appoloni CR, Pereira FC, Lopes F et al (2011) The first in situ portable Raman and XRF study of rock art in South America: paintings from Morro Azul caves in Paraná State, Brazil. In: 6th International Congress on the Application of Raman Spectroscopy in Art and Archaeology, 2011, Parma, Italia. RAA 2011 – Book of abstracts. TIMEO Editore, Bologna, p 98

    Google Scholar 

  55. Appoloni CR, Parellada CI, Jussiani EI, Lopes F, Melquiades FL, de Oliveira FCP (2014) Portable X-ray fluorescence and Raman Spectroscopy for in situ rock art analysis. In: X International Symposium on RockArt – V Meeting The Brazilian Association RockArt, 2014, Teresina. Anais X International Symposium on RockArt - V Meeting The Brazilian Association RockArt. ASSOCIAÇÃO BRASILEIRA DE ARTE RUPESTRE – ABAR, Teresina, p 124

    Google Scholar 

  56. Appoloni CR, Parellada CR, Jussiani EI, Melquiades FL, de Oliveira FCP (2014) Rock Art Paintings of Chapadinha Shelters, Paraná State, Brazil – an in situ Raman Study. In: X International Symposium on RockArt – V Meeting The Brazilian Association RockArt, 2014, Teresina. Anais X International Symposium on RockArt – V Meeting of The Brazilian Association RockArt. ASSOCIAÇÃO BRASILEIRA DE ARTE RUPESTRE – ABAR, Teresina, p 18

    Google Scholar 

  57. Parreira PS, Appoloni CR, Vieira RML, Scorzelli RB, Le Corre L, Guerra MF (2009) Precious metals determination in ancient coins by portable ED-XRF spectroscopy with a 238Pu source. ArcheoSciences, Rev d’archéométrie 33:313–318

    Google Scholar 

  58. Cesareo R, Ferretti M, Gigante GE, Guida G, Moioli P, Ridolfi S, Garcia CR (2007) The use of a European coinage alloy to compare the detection limits of mobile XRF systems. A feasibility study. X-Ray Spectrometry 36:167–172

    Google Scholar 

  59. Karydas AG (2007) Application of a portable XRF spectrometer for the non-invasive analysis of museum metal artifacts. Ann Chim 97(7):419–432

    Google Scholar 

  60. Vieira RML, Guerra MF, Scorzelli RB, Souza Azevedo I, Duttine M, Brito Pereira CE (2007) Estudo preliminar de algumas moedas holandesas da coleção do Museu Histórico Nacional do Rio de Janeiro. Revista Brasileira de Arqueometria, Restauração e Conservação 1(6):296–300. in Portuguese

    Google Scholar 

  61. Milazzo M (2004) Radiation applications in art and archaeometry X-ray fluorescence applications to archaeometry. Possibility of obtaining non-destructive quantitative analyses. Nucl Instrum Methods Phys Res B 213:683–692

    Google Scholar 

  62. Portugal NB: João I D, Regência e reinado (2000) In: Vieira RML (ed) Moedas Portuguesas da Época dos Descobrimentos na Coleção do Museu Histórico Nacional 1383–1583. Museu Histórico Nacional Press, Rio de Janeiro, pp 29–51, in Portuguese

    Google Scholar 

  63. Kump P, Nècemer P, Rupnik P (2005) Development of the quantification procedures for in situ XRF analysis, report IAEA-TECDOC-1456. IAEA, Vienna

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Márcia Rizzo Restaurações, Laboratório de Conservação e Restauração de Bens Culturais Ltda; Immaculate Conception Parish Church of São Paulo City; Leila Regina Teixeira, Conservação e Restauração Ltda; Immaculate Conception Basilica of Botafogo in Rio de Janeiro City; Rosa Scorzelli; Gerárd Poupeau; Claudia I. Parellada; Roberto Cesareo; Arkley M. Bandeira; project funding INCT-CNPq-FNA (464898/2014-5); CNPq; CAPES; and Fundação Araucária-PR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Roberto Appoloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Appoloni, C.R. et al. (2022). Laboratory Portable X-Ray Fluorescence (pXRF) Systems Design and Characteristics for In Situ Cultural Heritage Studies. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_19

Download citation

Publish with us

Policies and ethics

Navigation