Femtosecond Laser Direct Writing for 3D Microfluidic Biochip Fabrication

  • Chapter
  • First Online:
Laser Micro-Nano-Manufacturing and 3D Microprinting

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 309))

Abstract

Microfluidic devices with three-dimensional (3D) configurations and multiple functionalities are exceptionally useful for on-chip construction of artificial biological environments and 3D manipulation of bio-species in microscale spaces. Among the current methods for fabricating these devices, femtosecond (fs) laser direct writing offers several unique advantages, including simple procedures, maskless and resistless processing, and highly flexible 3D fabrication and multifunctional integration in transparent materials such as glass. Direct writing of 3D microstructures having designable functionalities with fs lasers allows the production of microfluidic, microoptic/photonic and microelectronic elements, which can be monolithically integrated into a single glass substrate for the fabrication of high-performance biochips. The principles of fs laser direct writing manufacture of microfluidic, optofluidic, electrofluidic, and ship-in-a-bottle biochips are introduced herein, and practical techniques and recent advances are reviewed. In addition, possible future directions in this field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G.M. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Article  ADS  Google Scholar 

  2. L.Y. Yeo, H.C. Chang, P.P.Y. Chan et al., Microfluidic devices for bioapplications. Small 7, 12–48 (2011)

    Article  Google Scholar 

  3. E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014)

    Article  ADS  Google Scholar 

  4. D. Huh, G.A. Hamilton, D.E. Ingber, From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011)

    Article  Google Scholar 

  5. J.D. Caplin, N.G. Granados, M.R. James et al., Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv. Healthc. Mater. 4, 1426–1450 (2015)

    Article  Google Scholar 

  6. A. Balijepalli, V. Sivaramakrishan, Organs-on-chips: research and commercial perspectives. Drug Discov. Today 22, 397–403 (2017)

    Article  Google Scholar 

  7. J. El-Ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature 442, 403–411 (2006)

    Article  ADS  Google Scholar 

  8. H. Yun, K. Kim, W.G. Lee, Cell manipulation in microfluidics. Biofabrication 5, 022001 (2013)

    Article  ADS  Google Scholar 

  9. X. Mu, W. Zheng, J. Sun et al., Microfluidics for manipulating cells. Small 9, 9–21 (2013)

    Article  Google Scholar 

  10. A.K. Au, W. Huynh, L.F. Horowitz et al., 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016)

    Article  Google Scholar 

  11. S. Waheed, J.M. Cabot, N.P. Macdonald et al., 3D printed microfluidic devices: enablers and barriers. Lab Chip 16, 1993–2013 (2016)

    Article  Google Scholar 

  12. C. Chen, B.T. Mehl, A.S. Munshi et al., 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review. Anal. Methods 8, 6005–6012 (2016)

    Article  Google Scholar 

  13. K. Itoh, W. Watanabe, S. Nolte et al., Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006)

    Article  Google Scholar 

  14. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  15. K. Sugioka, Y. Cheng, Femtosecond laser processing for optofluidic fabrication. Lab Chip 12, 3576–3589 (2012)

    Article  Google Scholar 

  16. K. Sugioka, J. Xu, D. Wu et al., Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 14, 3447–3458 (2014)

    Article  Google Scholar 

  17. R. Osellame, H.J.W.M. Hoekstra, G. Cerullo et al., Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 5, 442–463 (2011)

    Article  ADS  Google Scholar 

  18. B. Xu, Y. Zhang, H. **a et al., Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 13, 1677–1690 (2013)

    Article  Google Scholar 

  19. M. Kim, D.J. Hwang, H. Jeon et al., Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9, 311–318 (2009)

    Article  Google Scholar 

  20. F. Bragheri, L. Ferrara, N. Bellini et al., Optofluidic chip for single cell trap** and stretching fabricated by a femtosecond laser. J. Biophotonics 3, 234–243 (2010)

    Article  Google Scholar 

  21. Y. Hanada, K. Sugioka, H. Kawano et al., Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed. Microdevices 10, 403–410 (2008)

    Article  Google Scholar 

  22. Y. Hanada, K. Sugioka, S. Ishikawa et al., 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11, 2109–2115 (2011)

    Article  Google Scholar 

  23. Y. Hanada, T. Ogawa, K. Koike et al., Making the invisible visible: a microfluidic chip using a low refractive index polymer. Lab Chip 16, 2481–2486 (2016)

    Article  Google Scholar 

  24. D. Choudhury, W.T. Ramsay, R. Kiss et al., A 3D mammalian cell separator biochip. Lab Chip 12, 948–953 (2012)

    Article  Google Scholar 

  25. F. Brahheri, P. Minzioni, R.M. Vazquez et al., Optofluidic integrated cell sorter fabricated by femtosecond lasers. Lab Chip 12, 3779–3784 (2012)

    Article  Google Scholar 

  26. P. Paiè, F. Bragheri, R.M. Vazquez et al., Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. Lab Chip 14, 1826–1833 (2014)

    Article  Google Scholar 

  27. D. Wu, J. Xu, L. Niu, et al., In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci. Appl. 4, e228 (2015)

    Google Scholar 

  28. K.M. Davis, K. Miura, N. Sugimoto et al., Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)

    Article  ADS  Google Scholar 

  29. D. Choudhury, J.R. Macdonald, A.K. Kar, Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev. 8, 827–846 (2014)

    Article  ADS  Google Scholar 

  30. F. Chen, J.R. Vázquez de Aldana, Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 8, 251–275 (2014)

    Google Scholar 

  31. S. Gross, M.J. Withford, Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332–352 (2015)

    Article  Google Scholar 

  32. Y. Kondo, J. Qiu, T. Mitsuyu et al., Three-dimensional microdrilling of glass by multiphoton process and chemical etching. Jpn. J. Appl. Phys. 38, L1146 (1999)

    Article  Google Scholar 

  33. A. Marcinkevičius, S. Juodkazis, M. Watanabe et al., Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26, 277–279 (2001)

    Article  ADS  Google Scholar 

  34. M. Masuda, K. Sugioka, Y. Cheng et al., 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl. Phys. A 76, 857–860 (2003)

    Article  ADS  Google Scholar 

  35. Y. Bellouard, A. Said, M. Dugan et al., Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120–2129 (2004)

    Article  ADS  Google Scholar 

  36. Y. Li, K. Itoh, W. Watanabe et al., Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt. Lett. 26, 1912–1914 (2001)

    Article  ADS  Google Scholar 

  37. T.N. Kim, K. Campbell, A. Groisman et al., Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl. Phys. Lett. 86, 201106 (2005)

    Article  ADS  Google Scholar 

  38. R. An, Y. Li, Y. Dou et al., Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt. Express 13, 1855–1859 (2005)

    Article  ADS  Google Scholar 

  39. D.J. Hwang, T.Y. Choi, C.P. Grigoropoulos et al., Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass. Appl. Phys. A 79, 605–612 (2004)

    Article  ADS  Google Scholar 

  40. K. Ke, E.F. Hasselbrink Jr., A.J. Hunt et al., Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates. Anal. Chem. 77, 5083–5088 (2005)

    Article  Google Scholar 

  41. Y. Liao, Y. Ju, L. Zhang et al., Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt. Lett. 35, 3225–3227 (2010)

    Article  ADS  Google Scholar 

  42. Y. Ju, Y. Liao, L. Zhang et al., Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining. Microfluid. Nanofluid. 11, 111–117 (2012)

    Article  Google Scholar 

  43. Y. Liao, J. Song, E. Li et al., Rapid prototy** of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12, 746–749 (2012)

    Article  Google Scholar 

  44. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997)

    Article  ADS  Google Scholar 

  45. E. Stratakis, A. Ranella, M. Farsari et al., Laser-based micro/nanoengineering for biological applications. Prog. Quantum Electron. 33, 127–163 (2009)

    Article  ADS  Google Scholar 

  46. M. Farsari, B.N. Chichkov, Materials processing: two-photon fabrication. Nat. Photonics 3, 450–452 (2009)

    Article  ADS  Google Scholar 

  47. M. Malinauskas, M. Farsari, A. Piskarskas et al., Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep. 533, 1–31 (2013)

    Article  ADS  Google Scholar 

  48. T.W. Lim, Y. Son, Y.J. Jeong et al., Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11, 100–103 (2011)

    Article  Google Scholar 

  49. D. Wu, S. Wu, J. Xu et al., Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip. Laser Photonics Rev. 8, 458–467 (2014)

    Article  ADS  Google Scholar 

  50. J. Wang, Y. He, H. **a et al., Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10, 1993–1996 (2010)

    Article  Google Scholar 

  51. L. Amato, Y. Gu, N. Bellini et al., Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. Lab Chip 12, 1135–1142 (2012)

    Article  Google Scholar 

  52. H. **a, J. Wang, Y. Tian et al., Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv. Mater. 22, 3204–3207 (2010)

    Article  Google Scholar 

  53. K. Sugioka, T. Hongo, H. Takai et al., Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl. Phys. Lett. 86, 171910 (2005)

    Article  ADS  Google Scholar 

  54. Y. Hanada, K. Sugioka, K. Midorikawa, Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl. Phys. A 90, 603–607 (2008)

    Article  ADS  Google Scholar 

  55. Z. Zhou, J. Xu, Y. Liao et al., Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator. Opt. Commun. 282, 1370–1373 (2009)

    Article  ADS  Google Scholar 

  56. J. Xu, D. Wu, Y. Hanada et al., Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing. Lab Chip 13, 4608–4616 (2013)

    Article  Google Scholar 

  57. T. Tanaka, A. Ishikawa, S. Kawata, Two-photon-induced reduction of metal ions for fabricating three dimensional electrically conductive metallic microstructure. Appl. Phys. Lett. 88, 08110 (2006)

    Google Scholar 

  58. S. Maruo, T. Saeki, Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt. Express 16, 1174–1179 (2008)

    Article  ADS  Google Scholar 

  59. Y. Cao, N. Takeyasu, T. Tanaka et al., 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5, 1144–1148 (2009)

    Google Scholar 

  60. B. Xu, H. **a, L. Niu et al., Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6, 1762–1766 (2010)

    Article  Google Scholar 

  61. S.M. Eaton, C.D. Marco, R. Martinez-Vazquez et al., Femtosecond laser microstructuring for polymeric lab-on-chips. J. Biophotonics 5, 687–702 (2012)

    Article  Google Scholar 

  62. K. Sugioka, M. Masuda, T. Hongo et al., Three-dimensional microfluidic structure embedded in photostructurable glass by femtosecond laser for lab-on-chip application. Appl. Phys. A 78, 815–817 (2004)

    Article  ADS  Google Scholar 

  63. Y. Cheng, K. Sugioka, K. Midorikawa et al., Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt. Lett. 28, 1144–1146 (2003)

    Article  ADS  Google Scholar 

  64. K. Sugioka, Y. Cheng, Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining. Appl. Phys. A 114, 215–221 (2014)

    Article  ADS  Google Scholar 

  65. S. Kiyama, S. Matsuo, S. Hashimoto et al., Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates. J. Phys. Chem. C 113, 11560–11566 (2009)

    Article  Google Scholar 

  66. M. Hermans, J. Gottmann, F. Riedel, Selective laser-induced etching of fused silica at high scan-speeds using KOH. J. Laser Micro Nanoeng. 9, 126–131 (2014)

    Article  Google Scholar 

  67. F. He, Y. Cheng, Z. Xu et al., Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. Opt. Lett. 35, 282–284 (2010)

    Article  ADS  Google Scholar 

  68. F. He, J. Lin, Y. Cheng, Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining. Appl. Phys. B 105, 379–384 (2011)

    Article  ADS  Google Scholar 

  69. J. Lin, S. Yu, Y. Ma et al., On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Opt. Express 20, 10212–10217 (2012)

    Article  ADS  Google Scholar 

  70. R. Osellame, S. Taccheo, M. Marangoni et al., Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20, 1559–1567 (2003)

    Article  ADS  Google Scholar 

  71. Y. Cheng, K. Sugioka, K. Midorikawa et al., Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt. Lett. 28, 55–57 (2003)

    Article  ADS  Google Scholar 

  72. K. Sugioka, Y. Cheng, K. Midorikawa et al., Femtosecond laser microprocessing with three-dimensionally isotropic spatial resolution using crossed-beam irradiation. Opt. Lett. 31, 208–210 (2006)

    Article  ADS  Google Scholar 

  73. F. He, H. Xu, Y. Cheng et al., Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett. 35, 1106–1108 (2010)

    Article  ADS  Google Scholar 

  74. Y. Liao, Y. Shen, L. Qiao et al., Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes. Opt. Lett. 38, 187–189 (2013)

    Article  ADS  Google Scholar 

  75. Y. Liao, Y. Cheng, C. Liu et al., Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab Chip 13, 1626–1631 (2013)

    Article  Google Scholar 

  76. A. Schaap, T. Rohrlack, Y. Bellouard, Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12, 1527–1532 (2012)

    Article  Google Scholar 

  77. Z. Wang, K. Sugioka, K. Midorikawa, Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of Foturan glass. Appl. Phys. A 93, 225–229 (2008)

    Article  ADS  Google Scholar 

  78. L. Qiao, F. He, C. Wang et al., A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining. Appl. Phys. A 102, 179–183 (2011)

    Article  ADS  Google Scholar 

  79. J. Song, J. Lin, J. Tang et al., Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining. Opt. Express 22, 14792–14802 (2014)

    Article  ADS  Google Scholar 

  80. J. Voldman, Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 8, 425–454 (2006)

    Article  Google Scholar 

  81. L.A. MacQueen, M. Thibault, M.D. Buschmann et al., Electro-manipulation of biological cells in microdevices. IEEE Trans. Dielectr. Electr. Insul. 19, 1261–1268 (2012)

    Article  Google Scholar 

  82. J. Xu, Y. Liao, H. Zeng et al., Selective metallization on insulator surfaces with femtosecond laser pulses. Opt. Express 15, 12743–12748 (2007)

    Article  ADS  Google Scholar 

  83. J. Xu, Y. Liao, H. Zeng et al., Mechanism study of femtosecond laser induced selective metallization (FLISM) on glass surfaces. Opt. Commun. 281, 3505–3509 (2008)

    Article  ADS  Google Scholar 

  84. Y. Liao, J. Xu, H. Sun et al., Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser. Appl. Surf. Sci. 254, 7018–7021 (2008)

    Article  ADS  Google Scholar 

  85. J. Song, Y. Liao, C. Liu et al., Fabrication of gold microelectrodes on a glass substrate by femtosecond-laser-assisted electroless plating. J. Laser Micro/Nanoeng. 7, 334–338 (2012)

    Article  Google Scholar 

  86. Y. Liao, L. Qiao, Z. Wang et al., Fabrication of a liquid crystal light modulator by use of femtosecond-laser-induced nanoripples. Opt. Mater. Express 3, 1698–1704 (2013)

    Article  ADS  Google Scholar 

  87. G.A. Shafeev, Laser-assisted activation of dielectrics for electroless metal plating. Appl. Phys. A 67, 303–311 (1998)

    Article  ADS  Google Scholar 

  88. J. Xu, D. Wu, J.Y. Ip et al., Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis. RSC Adv. 5, 24072–24080 (2015)

    Article  Google Scholar 

  89. J. Xu, H. Kawano, W. Liu et al., Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication. Microsyst. Nanoeng. 3, 16078 (2017)

    Article  Google Scholar 

  90. J. Xu, K. Midorikawa, K. Sugioka, Femtosecond laser fabricated electrofluidic devices in glass for 3D manipulation of biological samples. Proc. SPIE 9735, 97350B (2016)

    Article  ADS  Google Scholar 

  91. J. Yan, Y. Du, J. Liu et al., Fabrication of integrated microelectrodes for electrochemical detection on electrophoresis microchip by electroless deposition and micromolding in capillary technique. Anal. Chem. 75, 5406–5412 (2003)

    Article  Google Scholar 

  92. M. Uncuer, H. Koser, Characterization and application of selective all-wet metallization of silicon. J. Micromech. Microeng. 22, 015003 (2012)

    Article  ADS  Google Scholar 

  93. D. Wu, L. Niu, S. Wu et al., Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate. Lab Chip 15, 1515–1523 (2015)

    Article  Google Scholar 

  94. K. Sugioka, D. Wu, K. Midorikawa, Ship-in-a-bottle biomicrochips fabricated by hybrid femtosecond laser processing. MATEC Web Conf. 8, 05005 (2013)

    Article  Google Scholar 

  95. F. Sima, D. Wu, J. Xu et al., Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips. Proc. SPIE 9350, 93500F (2015)

    Article  Google Scholar 

  96. F. Sima, D. Serien, D. Wu et al., Micro and nano-biomimetic structures for cell migration study fabricated by hybrid subtractive and additive 3D femtosecond laser processing. Proc. SPIE 10092, 1009207 (2017)

    Article  Google Scholar 

  97. K. Sugioka, Y. Cheng, A tutorial on optics for ultrafast laser materials processing: basic microprocessing system to beam sha** and advanced focusing methods. Adv. Opt. Technol. 1, 353–364 (2012)

    ADS  Google Scholar 

  98. M. Duocastella, C.B. Arnold, Bessel and annular beams for materials processing. Laser Photonics Rev. 6, 607–621 (2012)

    Article  ADS  Google Scholar 

  99. F. Courvoisier, R. Stoian, A. Couairon, Ultrafast laser micro- and nano-processing with nondiffracting and curved beams. Opt. Laser Technol. 80, 125–137 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sugioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Sima, F., Sugioka, K. (2020). Femtosecond Laser Direct Writing for 3D Microfluidic Biochip Fabrication. In: Hu, A. (eds) Laser Micro-Nano-Manufacturing and 3D Microprinting. Springer Series in Materials Science, vol 309. Springer, Cham. https://doi.org/10.1007/978-3-030-59313-1_8

Download citation

Publish with us

Policies and ethics

Navigation