Lithium-Ion Battery—3D Micro-/Nano-Structuring, Modification and Characterization

  • Chapter
  • First Online:
Laser Micro-Nano-Manufacturing and 3D Microprinting

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 309))

Abstract

Laser processing technologies for micro-/nanostructuring of electrode materials have a great potential in improving the electrochemical performance and operational lifetime of lithium-ion cells. Different types of laser structuring were used on different surfaces such as metallic current collectors and thin or thick film electrodes. For thin metallic current collector foils, at anode and cathode sides, the self-organized structuring by laser-induced periodical surface structures and laser interference methods were successfully applied for improving electrode film adhesion and cell impedance. For thin and thick film electrode layers direct laser ablation with structure sizes down to the micrometer range and high aspect ratios were found most powerful in order to create three-dimensional (3D) cell architectures with benefits regarding cell performance and a homogenous wetting of composite electrodes with liquid electrolyte. A huge impact of laser formed 3D batteries regarding capacity retention and cell lifetime at high charging and discharging rates was detected. The impact on diffusion kinetics of laser structured 3D electrodes was studied using classical methods such galvanostatic intermittent titration technique and cyclic voltammetry. A further improvement of 3D battery performance due to an operation in high potential regime and for advanced high energy silicon anode material was achieved by joining of laser structuring and thin-film passivation either of active particles before laser patterning or by passivating of complete 3D electrodes after laser processing. Finally, laser-induced breakdown spectroscopy will be presented as a powerful tool for elemental map** of entire 2D and 3D electrodes. The impact of 3D architectures on lithium distribution and chemical degradation processes in 2D batteries was investigated and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    C-rate of “1C” or “2C” is defined as complete theoretical lithium charge/discharge in 1 or 1/2 h, respectively.

References

  1. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z

    Article  Google Scholar 

  2. B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048

    Article  ADS  Google Scholar 

  3. G. Amatucci, A. Du Pasquier, A. Blyr, T. Zheng, J.M. Tarascon, The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochim. Acta 45(1–2), 255–271 (1999). https://doi.org/10.1016/S0013-4686(99)00209-1

    Article  Google Scholar 

  4. A. Sakti, Quantification of performance and cost trajectory of Li-ion battery designs for personal vehicle electrification in the near future. Dissertation, Carnegie Mellon University (2013)

    Google Scholar 

  5. D. Andre, S.-J. Kim, P. Lamp, S.F. Lux, F. Maglia, O. Paschos, B. Stiaszny, Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 3(13), 6709–6732 (2015). https://doi.org/10.1039/c5ta00361j

    Article  Google Scholar 

  6. J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104(10), 4463–4492 (2004)

    Article  Google Scholar 

  7. J.F.M. Oudenhoven, L. Baggetto, P.H.L. Notten, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1(1), 10–33 (2011). https://doi.org/10.1002/aenm.201000002

    Article  Google Scholar 

  8. R. Kohler, H. Besser, M. Hagen, J. Ye, C. Ziebert, S. Ulrich, J. Pröll, W. Pfleging, Laser micro-structuring of magnetron-sputtered SnOx thin films as anode material for lithium ion batteries. Microsyst. Technol. 17(2), 225–232 (2011). https://doi.org/10.1007/s00542-011-1259-1

    Article  Google Scholar 

  9. H. **a, Y.H. Wan, W. Assenmacher, W. Mader, G.L. Yuan, L. Lu, Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries. NPG Asia Mater. 6 (2014). https://doi.org/10.1038/am.2014.72

  10. W. **ong, Q.Y. **a, H. **a, Three-dimensional self-supported metal oxides as cathodes for microbatteries. Funct. Mater. Lett. 7(5) (2014). https://doi.org/10.1142/S1793604714300035

  11. S. Ferrari, M. Loveridge, S.D. Beattie, M. Jahn, R.J. Dashwood, R. Bhagat, Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources 286, 25–46 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.133

    Article  ADS  Google Scholar 

  12. W. Pfleging, J. Pröll, A new approach for rapid electrolyte wetting in tape cast electrodes for lithium-ion batteries. J. Mater. Chem. A 2(36), 14918–14926 (2014). https://doi.org/10.1039/c4ta02353f

    Article  Google Scholar 

  13. D.G. Lim, D.W. Chung, R. Kohler, J. Pröll, C. Scherr, W. Pfleging, R.E. Garcia, Designing 3D conical-shaped lithium-ion microelectrodes. J. Electrochem. Soc. 161(3), A302–A307 (2014). https://doi.org/10.1149/2.013403jes

    Article  Google Scholar 

  14. J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun, W.P. King: High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4 (2013). https://doi.org/10.1038/Ncomms2747

  15. H.G. Zhang, X.D. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6(5), 277–281 (2011). https://doi.org/10.1038/Nnano.2011.38

    Article  ADS  Google Scholar 

  16. L. Baggetto, R.A.H. Niessen, F. Roozeboom, P.H.L. Notten, High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv. Funct. Mater. 18(7), 1057–1066 (2008). https://doi.org/10.1002/adfm.200701245

    Article  Google Scholar 

  17. J. **e, J.F.M. Oudenhoven, D.J. Li, C.G. Chen, R.A. Eichel, P.H.L. Notten, High power and high capacity 3D-structured TiO2 electrodes for lithium-ion microbatteries. J. Electrochem. Soc. 163(10), A2385–A2389 (2016). https://doi.org/10.1149/2.1141610jes

    Article  Google Scholar 

  18. J. Pröll, H. Kim, A. Piqué, H.J. Seifert, W. Pfleging, Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for Li-ion microbatteries. J. Power Sources 255, 116–124 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.132

    Article  ADS  Google Scholar 

  19. S. Rosenberg, A. Hintennach, Laser-printed lithium-sulphur micro-electrodes for Li/S batteries. Russ. J. Electrochem. 50(4), 327–335 (2014). https://doi.org/10.1134/S1023193514040065

    Article  Google Scholar 

  20. E. Mottay, X.B. Liu, H.B. Zhang, E. Mazur, R. Sanatinia, W. Pfleging, Industrial applications of ultrafast laser processing. MRS Bull. 41(12), 984–992 (2016). https://doi.org/10.1557/mrs.2016.275

    Article  Google Scholar 

  21. M. Luetke, V. Franke, A. Techel, T. Himmer, U. Klotzbach, A. Wetzig, E. Beyer, A comparative study on cutting electrodes for batteries with lasers. Phys. Proc. 12, 286–291 (2011). https://doi.org/10.1016/j.phpro.2011.03.135

    Article  ADS  Google Scholar 

  22. B. Schmieder, Laser cutting of graphite anodes for automotive lithium-ion secondary batteries: investigations in the edge geometry and heat affected zone. Proc. SPIE 8244, 0R1–0R7 (2012)

    Google Scholar 

  23. A.G. Demir, B. Previtali, Remote cutting of Li-ion battery electrodes with infrared and green ns-pulsed fibre lasers. Int. J. Adv. Manufact. Technol. 75(9), 1557–1568 (2014). https://doi.org/10.1007/s00170-014-6231-7

    Article  Google Scholar 

  24. A.H.A. Lutey, A. Fortunato, S. Carmignato, A. Ascari, E. Liverani, G. Guerrini, Quality and productivity considerations for laser cutting of LiFePO4 and LiNiMnCoO2 battery electrodes. Proc. CIRP 42, 433–438 (2016). https://doi.org/10.1016/j.procir.2016.02.227

    Article  Google Scholar 

  25. J. Kurfer, M. Westermeier, C. Tammer, G. Reinhart, Production of large-area lithium-ion cells—preconditioning, cell stacking and quality assurance. CIRP Ann. Manufact. Technol. 61(1), 1–4 (2012). https://doi.org/10.1016/j.cirp.2012.03.101

    Article  Google Scholar 

  26. R. Kohler, J. Pröll, M. Bruns, S. Ulrich, H.J. Seifert, W. Pfleging, Conical surface structures on model thin-film electrodes and tape-cast electrode materials for lithium-ion batteries. Appl. Phys. A 112(1), 77–85 (2013). https://doi.org/10.1007/s00339-012-7205-y

    Article  ADS  Google Scholar 

  27. H. Kim, J. Pröll, R. Kohler, W. Pfleging, A. Pique, Laser-printed and processed LiCoO2 cathodethick films for LI-ion microbatteries. J. Laser Micro Nanoeng. 7(3), 320–325 (2012). https://doi.org/10.2961/jlmn.2012.03.0016

    Article  Google Scholar 

  28. J.S. Kim, W. Pfleging, R. Kohler, H.J. Seifert, T.Y. Kim, D. Byun, H.G. Jung, W.C. Choi, J.K. Lee, Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries. J. Power Sources 279, 13–20 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.041

    Article  ADS  Google Scholar 

  29. X.-X. Tang, W. Liu, B.-Y. Ye, Y. Tang, Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode. Trans. Nonferrous Met. Soc. China 23(6), 1723–1727 (2013). https://doi.org/10.1016/S1003-6326(13)62654-0

    Article  Google Scholar 

  30. P.H.L. Notten, F. Roozeboom, R.A.H. Niessen, L. Baggetto, 3-D integrated all-solid-state rechargeable batteries. Adv. Mater. 19(24), 4564–4567 (2007)

    Article  Google Scholar 

  31. R. Kohler, P. Smyrek, S. Ulrich, M. Bruns, V. Trouillet, W. Pfleging, Patterning and annealing of nanocrystalline LiCoO2 thin films. J. Optoelectron. Adv. Mater. 12(3), 547–552 (2010)

    Google Scholar 

  32. J. Pröll, R. Kohler, M. Torge, S. Ulrich, C. Ziebert, M. Bruns, H.J. Seifert, W. Pfleging, Laser microstructuring and annealing processes for lithium manganese oxide cathodes. Appl. Surf. Sci. 257, 9968–9976 (2011)

    Article  ADS  Google Scholar 

  33. J. Pröll, P.G. Weidler, R. Kohler, A. Mangang, S. Heissler, H.J. Seifert, W. Pfleging, Comparative studies of laser annealing technique and furnace annealing by X-ray diffraction and Raman analysis of lithium manganese oxide thin films for lithium-ion batteries. Thin Solid Films 531, 160–171 (2013). https://doi.org/10.1016/j.tsf.2013.01.015

    Article  ADS  Google Scholar 

  34. K.-Y. Oh, J.B. Siegel, L. Secondo, S.U. Kim, N.A. Samad, J. Qin, D. Anderson, K. Garikipati, A. Knobloch, B.I. Epureanu, C.W. Monroe, A. Stefanopoulou, Rate dependence of swelling in lithium-ion cells. J. Power Sources 267, 197–202 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.039

    Article  ADS  Google Scholar 

  35. X. Su, Q.L. Wu, J.C. Li, X.C. **ao, A. Lott, W.Q. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for Lithium-ion batteries: a review. Adv. Energy Mater. 4(1) (2014). https://doi.org/10.1002/Aenm.201300882

  36. D. Chen, S. Indris, M. Schulz, B. Gamer, R. Mönig, In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J. Power Sources 196(15), 6382–6387 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.009

    Article  ADS  Google Scholar 

  37. T. Yoon, C.C. Nguyen, D.M. Seo, B.L. Lucht, Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries. J. Electrochem. Soc. 162(12), A2325–A2330 (2015). https://doi.org/10.1149/2.0731512jes

    Article  Google Scholar 

  38. H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5), 414–429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004

    Article  Google Scholar 

  39. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Toward efficient binders for Li-ion battery si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2(11), 3004–3010 (2010). https://doi.org/10.1021/am100871y

    Article  Google Scholar 

  40. C. Erk, T. Brezesinski, H. Sommer, R. Schneider, J. Janek, Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. ACS Appl. Mater. Interfaces 5(15), 7299–7307 (2013). https://doi.org/10.1021/am401642c

    Article  Google Scholar 

  41. Y. Zheng, Z. An, P. Smyrek, H.J. Seifert, T. Kunze, V. Lang, A.F. Lasagni, W. Pfleging, Direct laser interference patterning and ultrafast laser-induced micro/nano structuring of current collectors for lithium-ion batteries. Proc. SPIE 9736, 1B1–1B7 (2016)

    Google Scholar 

  42. A.F. Lasagni, C. Gachot, K.E. Trinh, M. Hans, A. Rosenkranz, T. Roch, S. Eckhardt, T. Kunze, M. Bieda, D. Günther, V. Lang, F. Mücklich, Direct laser interference patterning, 20 years of development: from the basics to industrial applications. Proc. SPIE 10092, 11 (2017)

    Google Scholar 

  43. J.H. Klein-Wiele, P. Simon, Fabrication of periodic nanostructures by phase-controlled multiple-beam interference. Appl. Phys. Lett. 83(23), 4707–4709 (2003). https://doi.org/10.1063/1.1631746

    Article  ADS  Google Scholar 

  44. W. Pfleging, R. Kohler, M. Torge, V. Trouillet, F. Danneil, M. Stüber, Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro- and nanostructuring. Appl. Surf. Sci. 257(18), 7907–7912 (2011). https://doi.org/10.1016/j.apsusc.2011.02.126

    Article  ADS  Google Scholar 

  45. A.Y. Vorobyev, C. Guo, Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7(3), 385–407 (2013). https://doi.org/10.1002/lpor.201200017

    Article  ADS  Google Scholar 

  46. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23(3), 1–15 (2017). https://doi.org/10.1109/jstqe.2016.2614183

    Article  Google Scholar 

  47. J. Bonse, A. Rosenfeld, J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 106(10), 104910 (2009). https://doi.org/10.1063/1.3261734

    Article  ADS  Google Scholar 

  48. V.S. Makin, R.S. Makin, A.Y. Vorobyev, C. Guo, Dissipative nanostructures and Feigenbaum’s universality in the “metal-high-power ultrashort-pulsed polarized radiation” nonequilibrium nonlinear dynamical system. Tech. Phys. Lett. 34(5), 387–390 (2008). https://doi.org/10.1134/s1063785008050088

    Article  ADS  Google Scholar 

  49. Y. Zheng, Z. An, P. Smyrek, H.J. Seifert, T. Kunze, V. Lang, A.F. Lasagni, W. Pfleging, Laser interference patterning and laser-induced periodic surface structure formation on metallic substrates, in 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (2016), pp. 159–163. https://doi.org/10.1109/3m-nano.2016.7824955

  50. N. Zhang, Y. Zheng, A. Trifonova, W. Pfleging, Laser structured Cu foil for high-performance lithium-ion battery anodes. J. Appl. Electrochem., 1–9 (2017). https://doi.org/10.1007/s10800-017-1086-x

  51. W. Pfleging, P. Gotcu, Femtosecond laser processing of thick film cathodes and its impact on lithium-ion diffusion kinetics. Appl. Sci. 9(17), 3588 (2019)

    Article  Google Scholar 

  52. J. Pröll, R. Kohler, A. Mangang, S. Ulrich, C. Ziebert, W. Pfleging, 3D structures in battery materials. J. Laser Micro Nanoeng. 7(1), 97–104 (2012). https://doi.org/10.2961/jlmn.2012.01.0019

    Article  Google Scholar 

  53. P. Gotcu, H.J. Seifert, Thermophysical properties of LiCoO2–LiMn2O4 blended electrode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 18(15), 10550–10562 (2016). https://doi.org/10.1039/c6cp00887a

    Article  Google Scholar 

  54. A. Manthiram, T. Muraliganth, Lithium intercalation cathode materials for lithium-ion batteries, in Handbook of Battery Material. ed. by C. Daniel, J.O. Besenhar (Wiley-VCH Verlag GmbH & Co., Weinheim, 2011), pp. 343–375

    Google Scholar 

  55. P. Smyrek, J. Pröll, H.J. Seifert, W. Pfleging, Laser-induced breakdown spectroscopy of laser-structured Li(NiMnCo)O2 electrodes for lithium-ion batteries. J. Electrochem. Soc. 163(2), A19–A26 (2016). https://doi.org/10.1149/2.0981514jes

    Article  Google Scholar 

  56. P. Gotcu, W. Pfleging, P. Smyrek, H.J. Seifert, Thermal behaviour of LixMeO2 (Me = Co or Ni + Mn + Co) cathode materials. Phys. Chem. Chem. Phys. 19, 11920–11930 (2017). https://doi.org/10.1039/c7cp00513j

  57. W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124(10), 1569–1578 (1977). https://doi.org/10.1149/1.2133112

    Article  ADS  Google Scholar 

  58. J.N. Reimers, J.R. Dahn, Electrochemical and in situ X-ray-diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139(8), 2091–2097 (1992). https://doi.org/10.1149/1.2221184

    Article  ADS  Google Scholar 

  59. Z.H. Chen, J.R. Dahn, Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 49(7), 1079–1090 (2004). https://doi.org/10.1016/j.electacta.2003.10.019

  60. Y. Reynier, J. Graetz, T. Swan-Wood, P. Rez, R. Yazami, B. Fultz, Entropy of Li intercalation in LixCoO2. Phys. Rev. B 70(17), 174304 (2004)

    Article  ADS  Google Scholar 

  61. J.N. Reimers, J.R. Dahn, U. Vonsacken, Effects of impurities on the electrochemical properties of LiCoO2. J. Electrochem. Soc. 140(10), 2752–2754 (1993). https://doi.org/10.1149/1.2220905

    Article  ADS  Google Scholar 

  62. K. Chang, B. Hallstedt, D. Music, J. Fischer, C. Ziebert, S. Ulrich, H.J. Seifert, Thermodynamic description of the layered O3 and O2 structural LiCoO2–CoO2 pseudo-binary systems. Calphad 41, 6–15 (2013). https://doi.org/10.1016/j.calphad.2013.01.001

    Article  Google Scholar 

  63. G. Denuault, M. Sosna, K.-J. Williams, 11—classical experiments A2—Zoski, Cynthia G, in Handbook of Electrochemistry (Elsevier, Amsterdam, 2007), pp. 431–469

    Google Scholar 

  64. J.S. Hong, J.R. Selman, Relationship between calorimetric and structural characteristics of lithium-ion cells—II. Determination of Li transport properties. J. Electrochem. Soc. 147(9), 3190–3194 (2000). https://doi.org/10.1149/1.1393882

  65. M. Mangang, P. Gotcu-Freis, H.J. Seifert, W. Pfleging, Electrochemical and kinetic studies of ultrafast laser structured LiFePO4 electrodes. Proc. SPIE 9351, 0K1–0K12 (2015). https://doi.org/10.1117/12.2078900

  66. K. Tang, X. Yu, J. Sun, H. Li, X. Huang, Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim. Acta 56(13), 4869–4875 (2011). https://doi.org/10.1016/j.electacta.2011.02.119

    Article  Google Scholar 

  67. T. Teranishi, Y. Yoshikawa, R. Sakuma, H. Hashimoto, H. Hayashi, A. Kishimoto, T. Fujii, High-rate performance of ferroelectric BaTiO3-coated LiCoO2 for Li-ion batteries. Appl. Phys. Lett. 105(14), 143904-1–143904-3 (2014). https://doi.org/10.1063/1.4898006

  68. Q. Hao, C.X. Xu, S.Z. Jia, X.Y. Zhao, Improving the cycling stability of LiCoO2 at 4.5 V through surface modification by Fe2O3 coating. Electrochim. Acta 113, 439–445 (2013). https://doi.org/10.1016/j.electacta.2013.09.105

  69. Q. Hao, H.Y. Ma, Z.C. Ju, G.D. Li, X.W. Li, L.Q. Xu, Y.T. Qian, Nano-CuO coated LiCoO2: synthesis, improved cycling stability and good performance at high rates. Electrochim. Acta 56(25), 9027–9031 (2011). https://doi.org/10.1016/j.electacta.2011.04.097

    Article  Google Scholar 

  70. Y. Bai, K. Jiang, S.W. Sun, Q. Wu, X. Lu, N. Wan, Performance improvement of LiCoO2 by MgF2 surface modification and mechanism exploration. Electrochim. Acta 134, 347–354 (2014). https://doi.org/10.1016/j.electacta.2014.04.155

    Article  Google Scholar 

  71. H.M. Cheng, F.M. Wang, J.P. Chu, R. Santhanam, J. Rick, S.C. Lo, Enhanced cycleabity in lithium ion batteries: resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes. J. Phys. Chem. C 116(14), 7629–7637 (2012). https://doi.org/10.1021/jp210551r

    Article  Google Scholar 

  72. E. Jung, Y.J. Park, Characterization of thermally aged AlPO4-coated LiCoO2 thin films. Nanoscale Res. Lett. 7, 1–4 (2012). https://doi.org/10.1186/1556-276x-7-12

    Article  ADS  Google Scholar 

  73. C. Hudaya, J.H. Park, J.K. Lee, W. Choi, SnO2-coated LiCoO2 cathode material for high-voltage applications in lithium-ion batteries. Solid State Ionics 256, 89–92 (2014). https://doi.org/10.1016/j.ssi.2014.01.016

    Article  Google Scholar 

  74. B.J. Hwang, C.Y. Chen, M.Y. Cheng, R. Santhanam, K. Ragavendran, Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J. Power Sources 195(13), 4255–4265 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.040

    Article  ADS  Google Scholar 

  75. X.Y. Dai, L.P. Wang, J. Xu, Y. Wang, A.J. Zhou, J.Z. Li, Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering. ACS Appl. Mater. Interfaces 6(18), 15853–15859 (2014). https://doi.org/10.1021/am503260s

    Article  Google Scholar 

  76. Y. Orikasa, D. Takamatsu, K. Yamamoto, Y. Koyama, S. Mori, T. Masese, T. Mori, T. Minato, H. Tanida, T. Uruga, Z. Ogumi, Y. Uchimoto, Origin of surface coating effect for MgO on LiCoO2 to improve the interfacial reaction between electrode and electrolyte. Adv. Mater. Interfaces 1(9) (2014). https://doi.org/10.1002/Admi.201400195

  77. Q. Cao, H.P. Zhang, G.J. Wang, Q. **a, Y.P. Wu, H.Q. Wu, A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem. Commun. 9(5), 1228–1232 (2007). https://doi.org/10.1016/j.elecom.2007.01.017

    Article  Google Scholar 

  78. J. Kim, B. Kim, J.G. Lee, J. Cho, B. Park, Direct carbon-black coating on LiCoO2 cathode using surfactant for high-density Li-ion cell. J. Power Sources 139(1–2), 289–294 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.008

    Article  ADS  Google Scholar 

  79. J.H. Park, C. Hudaya, A.Y. Kim, D.K. Rhee, S.J. Yeo, W. Choi, P.J. Yoo, J.K. Lee, Al-C hybrid nanoclustered anodes for lithium ion batteries with high electrical capacity and cyclic stability. Chem. Commun. 50(22), 2837–2840 (2014). https://doi.org/10.1039/c3cc47900e

    Article  Google Scholar 

  80. C. Hudaya, B. Kang, H.G. Jung, W. Choi, B.J. Jeon, J.K. Lee, Plasma-polymerized C-60 as a functionalized coating layer on fluorine-doped tin oxides for anode materials of lithium-ion batteries. Carbon 81, 835–838 (2015). https://doi.org/10.1016/j.carbon.2014.09.015

    Article  Google Scholar 

  81. A.A. Arie, J.K. Lee, Fullerene C-60 coated silicon nanowires as anode materials for lithium secondary batteries. J. Nanosci. Nanotechnol. 12(4), 3547–3551 (2012). https://doi.org/10.1166/jnn.2012.5557

    Article  Google Scholar 

  82. A.A. Arie, O.M. Vovk, J.K. Lee, Surface-coated silicon anodes with amorphous carbon film prepared by fullerene C-60 sputtering. J. Electrochem. Soc. 157(6), A660–A665 (2010). https://doi.org/10.1149/1.3363531

    Article  Google Scholar 

  83. C. Hudaya, M. Halim, J. Proll, H. Besser, W. Choi, W. Pfleging, H.J. Seifert, J.K. Lee, A polymerized C60 coating enhancing interfacial stability at three-dimensional LiCoO2 in high-potential regime. J. Power Sources 298, 1–7 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.044

    Article  ADS  Google Scholar 

  84. A.A. Arie, J.O. Song, J.K. Lee, Structural and electrochemical properties of fullerene-coated silicon thin film as anode materials for lithium secondary batteries. Mater. Chem. Phys. 113(1), 249–254 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.082

    Article  Google Scholar 

  85. J. Mun, T. Yim, J.H. Park, J.H., Ryu, S.Y. Lee, Y.G. Kim, S.M. Oh, Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries. Sci. Rep. 4 (2014). https://doi.org/10.1038/Srep05802

  86. J.P. Yu, Z.H. Han, X.H. Hu, H. Zhan, Y.H. Zhou, X.J. Liu, The investigation of Ti-modified LiCoO2 materials for lithium ion battery. J. Power Sources 262, 136–139 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.073

    Article  ADS  Google Scholar 

  87. H. Castaneda, The impedance response of different mechanisms for LiCoO2/acetylene carbon electrodes in alkaline solutions under polarization conditions. Electrochim. Acta 112, 562–576 (2013). https://doi.org/10.1016/j.electacta.2013.08.177

    Article  Google Scholar 

  88. F. Boue-Bigne, Laser-induced breakdown spectroscopy applications in the steel industry: rapid analysis of segregation and decarburization. Spectrochim. Acta Part B Atom. Spectrosc. 63(10), 1122–1129 (2008). https://doi.org/10.1016/j.sab.2008.08.014

    Article  ADS  Google Scholar 

  89. J.M. Vadillo, J.J. Laserna, Laser-induced plasma spectrometry: truly a surface analytical tool. Spectrochim. Acta Part B Atom. Spectrosc. 59(2), 147–161 (2004). https://doi.org/10.1016/j.sab.2003.11.006

    Article  ADS  Google Scholar 

  90. J.M. Vadillo, C.C. Garcia, S. Palanco, J.J. Laserna, Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam. J. Anal. At. Spectrom. 13(8), 793–797 (1998). https://doi.org/10.1039/A802343c

    Article  Google Scholar 

  91. V. Zorba, J. Syzdek, X.L. Mao, R.E. Russo, R. Kostecki, Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces. Appl. Phys. Lett. 100(23) (2012). https://doi.org/10.1063/1.4724203

  92. H.M. Hou, L. Cheng, T. Richardson, G.Y. Chen, M. Doeff, R. Zheng, R. Russo, V. Zorba, Three-dimensional elemental imaging of Li-ion solid-state electrolytes using FS-laser induced breakdown spectroscopy (LIBS). J. Anal. At. Spectrom. 30(11), 2295–2302 (2015). https://doi.org/10.1039/c5ja00250h

    Article  Google Scholar 

  93. P. Smyrek, Y. Zheng, J.H. Rakebrandt, H.J. Seifert, W. Pfleging, Investigation of micro-structured Li(Ni1/3Mn1/3Co1/3)O2 cathodes by laser-induced breakdown spectroscopy. Proc. SPIE 10092, 0S1–0S7 (2017). https://doi.org/10.1117/12.2253894

  94. P. Smyrek, Y. Zheng, H.J. Seifert, W. Pfleging, Post-mortem characterization of FS laser-generated micro-pillars in Li(Ni1/3Mn1/3Co1/3)O2 electrodes by laser-induced breakdown spectroscopy. Proc. SPIE 9736, 1C1–1C6 (2016)

    Google Scholar 

  95. P. Smyrek, Y. Zheng, H.J. Seifert, W. Pfleging, Laser-induced breakdown spectroscopy as a powerful tool for characterization of laser modified composite materials, in 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 18–22 July 2016, pp. 164–167

    Google Scholar 

  96. H.H. Zheng, G. Liu, X.Y. Song, P. Ridgway, S.D. Xun, V.S. Battaglia, Cathode performance as a function of inactive material and void fractions. J. Electrochem. Soc. 157(10), A1060–A1066 (2010). https://doi.org/10.1149/1.3459878

    Article  Google Scholar 

  97. P. Smyrek, T. Bergfeldt, H.J. Seifert, W. Pfleging, Laser-induced breakdown spectroscopy for the quantitative measurement of lithium concentration profiles in structured and unstructured electrodes. J. Mater. Chem. A 7(10), 5656–5665 (2019). https://doi.org/10.1039/c8ta10328c

    Article  Google Scholar 

  98. S.L. Wu, W. Zhang, X. Song, A.K. Shukla, G. Liu, V. Battaglia, V. Srinivasan, High rate capability of Li(Ni1/3Mn1/3Co1/3)O2 electrode for Li-ion batteries. J. Electrochem. Soc. 159(4), A438–A444 (2012). https://doi.org/10.1149/2.062204jes

    Article  Google Scholar 

Download references

Acknowledgements

We thank the financial support by the German Federal Ministry of Education and Research (BMBF) in frame of the Korea-Germany Mobility Programme (01DR14018). Furthermore, this work was supported by KIST institutional program and research grants of NRF (NRF-2012M1A2A2671792) funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea. The work on laser processing and 3D battery has received funding from the German Research Foundation (DFG, Project No. 392322200). The authors thank to Dr. Melanie Mangang, Dr. Robert Kohler, Dr. Johannes Pröll, Dr. Jung Sub Kim, and Prof. Dr. Chairul Hudaya for their scientific and technical contributions of many years to the 3D battery concept.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Pfleging .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfleging, W., Gotcu, P., Smyrek, P., Zheng, Y., Lee, J.K., Seifert, H.J. (2020). Lithium-Ion Battery—3D Micro-/Nano-Structuring, Modification and Characterization. In: Hu, A. (eds) Laser Micro-Nano-Manufacturing and 3D Microprinting. Springer Series in Materials Science, vol 309. Springer, Cham. https://doi.org/10.1007/978-3-030-59313-1_11

Download citation

Publish with us

Policies and ethics

Navigation