Nesting Theory of Many Moments and Maximum Entropy Principle

  • Chapter
  • First Online:
Classical and Relativistic Rational Extended Thermodynamics of Gases
  • 479 Accesses

Abstract

We consider molecular extended thermodynamics (molecular ET) of rarefied polyatomic gases with the system composed of two hierarchies of balance equations for the moments of a distribution function. The internal degrees of freedom of a molecule are properly taken into account in the distribution function. By the reasoning of physical relevance, the truncation orders of the two hierarchies are shown to be dependent on each other. And the two closure procedures based on the maximum entropy principle and on the entropy principle are also proved to be equivalent to each other.

Characteristic velocities of a hyperbolic system of balance equations for a polyatomic gas are compared to those obtained for a monatomic gas. The lower bound estimate for the maximum equilibrium characteristic velocity established for a monatomic gas is proved to be valid also for a rarefied polyatomic gas, that is, the estimate is independent of the degrees of freedom of a molecule. As a consequence, also for polyatomic gases, when the number of moments increases the maximum characteristic velocity becomes unbounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Upon inspection it can be seen that in the one-dimensional case, for any N and M, \(\{F_{i_1 i_2 \ldots i_A}\), \(0 \leqslant A \leqslant N\}\) is mapped into {F p,q, \(0 \leqslant p+2q \leqslant N\}\), and \(\{G_{lli_1 i_2 \ldots i_{A'}}\), \(0 \leqslant A' \leqslant M\}\) is mapped into \(\{G_{p',q'}\), \(0 \leqslant p'+2q' \leqslant M\}\).

References

  1. G. Boillat, T. Ruggeri, Moment equations in the kinetic theory of gases and wave velocities. Continuum Mech. Thermodyn. 9, 205 (1997)

    Article  MathSciNet  Google Scholar 

  2. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, A study of linear waves based on extended thermodynamics for rarefied polyatomic gases. Acta Appl. Math. 132, 15 (2014)

    MathSciNet  MATH  Google Scholar 

  3. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Monatomic rarefied gas as a singular limit of poyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136 (2013)

    Article  MathSciNet  Google Scholar 

  4. M. Pavić, T. Ruggeri, S. Simić, Maximum entropy principle for rarefied polyatomic gases. Physica A 392, 1302 (2013)

    Article  MathSciNet  Google Scholar 

  5. T. Arima, A. Mentrelli, T. Ruggeri, Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111 (2014)

    MathSciNet  MATH  Google Scholar 

  6. G. Boillat, T. Ruggeri, On the evolution law of the weak discontinuities for hyperbolic quasi-linear systems. Wave Motion 1, 149 (1979)

    MathSciNet  MATH  Google Scholar 

  7. T. Ruggeri, Stability and discontinuity waves for symmetric hyperbolic systems, in Non-Linear Wave Motion ed. by A. Jeffrey (Longman Press, New York, 1989), pp.148–161

    Google Scholar 

  8. A. Muracchini, T. Ruggeri, L. Seccia, Dispersion relation in the high frequency limit and non-linear wave stability for hyperbolic dissipative systems. Wave Motion 15, 143 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Z. Banach, W. Larecki, T. Ruggeri, Dispersion relation in the limit of high frequency for a hyperbolic system with multiple eigenvalues. Wave Motion 51, 955 (2014)

    MathSciNet  MATH  Google Scholar 

  10. G. Boillat, T. Ruggeri, On the shock structure problem for hyperbolic system of balance laws and convex entropy. Continuum Mech. Thermodyn. 10, 285 (1998)

    Article  MathSciNet  Google Scholar 

  11. S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)

    MATH  Google Scholar 

  12. T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, On the six-field model of fluids based on extended thermodynamics. Meccanica 49, 2181 (2014)

    MathSciNet  MATH  Google Scholar 

  13. G. Boillat, T. Ruggeri, Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Rational Mech. Anal. 137, 305 (1997)

    Article  MathSciNet  Google Scholar 

  14. T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws. The structure of the extended thermodynamics. Continuum Mech. Thermodyn. 1, 3 (1989)

    Article  Google Scholar 

  15. S. Pennisi, T. Ruggeri, Classical limit of relativistic moments associated with Boltzmann-Chernikov equation: optimal choice of moments in classical theory. J. Stat. Phys. 179 231–246 (2020)

    MathSciNet  MATH  Google Scholar 

  16. B. Rahimi, H. Struchtrup, Capturing non-equilibrium phenomena in rarefied polyatomic gases: a high-order macroscopic model. Phys. Fluids 26, 052001 (2014)

    Article  Google Scholar 

  17. T. Arima, A. Mentrelli, T. Ruggeri, Extended thermodynamics of rarefied polyatomic gases and characteristic velocities. Rend. Lincei Mat. Appl. 25, 275 (2014)

    MathSciNet  MATH  Google Scholar 

  18. V.M. Zhdanov, The kinetic theory of a polyatomic gas. Sov. Phys. JETP 26, 1187 (1968)

    Google Scholar 

  19. F.J. McCormack, Kinetic equations for polyatomic gases: the 17-moment approximation. Phys. Fluids 11, 2533 (1968)

    Google Scholar 

  20. L. Desvillettes, R. Monaco, F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B. Fluids 24, 219 (2005)

    MathSciNet  MATH  Google Scholar 

  21. M.C. Carrisi, S. Pennisi, An 18 moments model for dense gases: entropy and Galilean relativity principles without expansions. Entropy 17, 214 (2015)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruggeri, T., Sugiyama, M. (2021). Nesting Theory of Many Moments and Maximum Entropy Principle. In: Classical and Relativistic Rational Extended Thermodynamics of Gases. Springer, Cham. https://doi.org/10.1007/978-3-030-59144-1_9

Download citation

Publish with us

Policies and ethics

Navigation