Relativistic RET of Rarefied Monatomic Gas

  • Chapter
  • First Online:
Classical and Relativistic Rational Extended Thermodynamics of Gases

Abstract

In this chapter, firstly, the relativistic Euler model of a gas is presented with the proof that the system is symmetric hyperbolic for general constitutive equations. In the case of rarefied monatomic gas, by using the relativistic Boltzmann-Chernikov equation, appropriate constitutive equations and, in particular, the Synge energy are discussed. The two limits in classical and ultra-relativistic cases are also studied.

Then, the modern approach to a relativistic gas with dissipation, that is, RET of a relativistic gas given by Liu, Müller, and Ruggeri (LMR) is summarized. The LMR theory is an improvement to the previous casual theories of Müller and Israel.

The RET with many moments, say N moments, is also studied together with the evaluation of the characteristic velocities for increasing number N. In this framework, the maximum characteristic velocity is bounded for any number N. It converges to the light velocity from below when N →.

In the last section, the classical limit is studied. Then it is proved that, for a fixed N, there exists a unique choice of the moments in classical case. This is probably an answer to the longstanding problem about the optimal choice of moments in the classical case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Müller, A History of Thermodynamics, The Doctrine of Energy and Entropy (Springer, Berlin, 2007)

    MATH  Google Scholar 

  2. I. Müller, Thermodynamics (Pitman, Boston, 1985)

    MATH  Google Scholar 

  3. I. Müller, T. Ruggeri, Rational Extended Thermodynamics, 2nd edn. (Springer, New York, 1998)

    Book  Google Scholar 

  4. I. Müller, Zur Ausbreitungsgeschwindigkeit von Störungen in Kontinuierlichen Medien, PhD thesis (RWTH Aachen University, Aachen, 1966)

    Google Scholar 

  5. W. Israel, Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100, 310 (1976)

    Article  MathSciNet  Google Scholar 

  6. T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid. Acta Mech. 47, 167 (1983)

    Article  MathSciNet  Google Scholar 

  7. I.-S. Liu, I. Müller, Extended thermodynamics of classical and degenerate ideal gases. Arch. Rat. Mech. Anal. 83, 285 (1983)

    Article  MathSciNet  Google Scholar 

  8. I.-S. Liu, I. Müller, T. Ruggeri, Relativistic thermodynamics of gases. Ann. Phys. 169, 191 (1986)

    Article  MathSciNet  Google Scholar 

  9. C. Eckart, The thermodynamics of irreversible processes III: Relativistic theory of the simple fluid. Phys. Rev. 58, 919 (1940)

    Article  Google Scholar 

  10. S.-Y. Ha, J. Kim, T. Ruggeri, From the relativistic mixture of gases to the relativistic Cucker-Smale flocking. Arch. Rational Mech. Anal. 235, 1661–1706 (2020)

    Article  MathSciNet  Google Scholar 

  11. T. Ruggeri, A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems: Relativistic fluid dynamics. Ann. Inst. H. Poincaré Sect. A 34, 65 (1981)

    MathSciNet  MATH  Google Scholar 

  12. T. Ruggeri, Entropy principle and relativistic extended thermodynamics: global existence of smooth solutions and stability of equilibrium state. Il Nuovo Cimento B 119, 809 (2004); Lecture notes of the International Conference in honour of Y. Choquet-Bruhat: analysis, Manifolds and Geometric Structures in Physics, ed. by G. Ferrarese, T. Ruggeri (2004)

    Google Scholar 

  13. T. Ruggeri, Extended relativistic thermodynamics, in General Relativity and the Einstein Equations, ed. by Y. Choquet Bruhat (Oxford University, Oxford, 2009), pp. 334–340

    Google Scholar 

  14. G. Boillat, in Recent Mathematical Methods in Nonlinear Wave Propagation. CIME Course, Lecture Notes in Mathematics, vol. 1640, ed. by T. Ruggeri (Springer, Berlin, 1995), pp. 103–152

    Google Scholar 

  15. G. Boillat, T. Ruggeri, Maximum wave velocity in the moments system of a relativistic gas. Continuum Mech. Thermodyn. 11, 107 (1999)

    MathSciNet  MATH  Google Scholar 

  16. G. Boillat, T. Ruggeri, Relativistic gas: moment equations and maximum wave velocity. J. Math. Phys. 40, 6399 (1999)

    MathSciNet  MATH  Google Scholar 

  17. A.M. Anile, Relativistic Fluids and Magneto-Fluids (Cambridge University, Cambridge, 1989)

    MATH  Google Scholar 

  18. C. Cercignani, G.M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications (Birkhäuser, Basel, 2002)

    Google Scholar 

  19. L. Rezzolla, O. Zanotti, Relativistic Hydrodynamics (Oxford University, Oxford, 2013)

    MATH  Google Scholar 

  20. N.A. Chernikov, Microscopic foundation of relativistic hydrodynamics. Acta Phys. Polonica 27, 465 (1965)

    MathSciNet  MATH  Google Scholar 

  21. J.L. Synge, The Relativistic Gas (North Holland, Amsterdam, 1957)

    MATH  Google Scholar 

  22. T. Ruggeri, Q. **ao, H. Zhao, Nonlinear hyperbolic waves in relativistic gases of massive particles with Synge energy. Arch. Rational Mech. Anal. 239, 1061 (2021)

    MathSciNet  MATH  Google Scholar 

  23. T. Ruggeri, Q. **ao, Classical and ultrarelativistic limits of the Riemann problem for the relativistic Euler fluid with Synge energy. Ric. Mat. (2020). https://doi.org/10.1007/s11587-020-00502-y

  24. C. Rogers, T. Ruggeri, On invariance in 1+1-dimensional isentropic relativistic gasdynamics. Wave Motion 94, 102527 (2020)

    MathSciNet  MATH  Google Scholar 

  25. C. Rogers, T. Ruggeri, W.K. Schief, On relativistic gasdynamics, in Invariance Under a Class of Reciprocal-type Transformations and Integrable Heisenberg Spin Connections. Proceedings A Royal Society (2020)

    Google Scholar 

  26. H. Freistühler, Relativistic barotropic fluids: a Godunov-Boillat formulation for their dynamics and a discussion of two special classes. Arch. Rational Mech. Anal. 232, 473 (2019)

    MathSciNet  MATH  Google Scholar 

  27. J. Smoller, B. Temple, Global solutions of the relativistic Euler equations. Commun. Math. Phys. 156, 67 (1993)

    MathSciNet  MATH  Google Scholar 

  28. H. Ott, Lorentz Transformation der War̈meundder Temperatur. Zeitschrift für Physik 175, 70 (1963)

    MATH  Google Scholar 

  29. H. Arzeliés, Relativistic transformation of temperature and some other thermodynamical quantities (in French). N. Cim. 35, 792 (1965)

    Google Scholar 

  30. C. Fariás, V.A. Pinto, P.S. Moya, What is the temperature of a moving body? Sci. Rep. 7, 17657 (2017)

    Google Scholar 

  31. T. Ruggeri, Relativistic extended thermodynamics: general assumptions and mathematical procedure. Corso CIME Noto (Giugno 1987). Lecture Notes in Mathematics 1385, ed. by A. Anile, Y. Choquet-Bruhat (Springer, Berlin, 1987), pp. 269–277

    Google Scholar 

  32. Y. Choquet Bruhat, General Relativity and the Einstein equations (Oxford University, Oxford, 2009)

    MATH  Google Scholar 

  33. G.M. Kremer, Extended thermodynamics of ideal gases with 14 fields. Ann. I. H. P., Phys. Theor. T. 45, 419 (1986)

    Google Scholar 

  34. S. Pennisi, T. Ruggeri, Classical limit of relativistic moments associated with Boltzmann-Chernikov equation: optimal choice of moments in classical theory. J. Stat. Phys. 179 231–246 (2020)

    MathSciNet  MATH  Google Scholar 

  35. W. Dreyer, W. Weiss, The classical limit of relativistic extended thermodynamics. Ann. Inst. H. Poincaré, Sect. A 45, 401 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruggeri, T., Sugiyama, M. (2021). Relativistic RET of Rarefied Monatomic Gas. In: Classical and Relativistic Rational Extended Thermodynamics of Gases. Springer, Cham. https://doi.org/10.1007/978-3-030-59144-1_5

Download citation

Publish with us

Policies and ethics

Navigation