Abstract

In this chapter, we make a survey on the mathematical structure of the system of rational extended thermodynamics, which is strictly related to the mathematical problems of hyperbolic systems in balance form with a convex entropy density. We summarize the main results: The proof of the existence of the main field in terms of which a system becomes symmetric, and several properties derived from the qualitative analysis concerning symmetric hyperbolic systems. In particular, the Cauchy problem is well-posed locally in time, and if the so-called K-condition is satisfied, there exist global smooth solutions provided that the initial data are sufficiently small. Moreover the main field permits us to identify natural subsystems and in this way we have a structure of nesting theories. The main property of these subsystems is that the characteristic velocities satisfy the so-called subcharacteristic conditions that imply, in particular, that the maximum characteristic velocity does not decrease when the number of equations increases. Another beautiful general property is the compatibility of the balance laws with the Galilean invariance that dictates the precise dependence of the field equations on the velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The proof in [164] was done in a covariant formalism. Instead, here, we use a classical formalism for simplicity.

  2. 2.

    We recall that, due to the different sign of the entropy density in Definition 2.2, the word “positive definite” is changed into “negative definite”.

  3. 3.

    We recall that, in the paper [178], the sign of the quantities h α and h ′α is opposite to the one adopted here.

  4. 4.

    The definition and the properties remain valid for prescribed values of \( {\mathbf {w}}^\prime _*\) that depend on x α in an arbitrary manner. In this case the principal subsystem is not autonomous [165].

References

  1. I. Müller, T. Ruggeri, Rational Extended Thermodynamics, 2nd edn. (Springer, New York, 1998)

    Book  Google Scholar 

  2. T. Ruggeri, Struttura dei sistemi alle derivate parziali compatibili con un principio di entropia e termodinamica estesa. Suppl. Boll. UMI. 261, 4 (1985)

    Google Scholar 

  3. T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid. Acta Mech. 47, 167 (1983)

    Article  MathSciNet  Google Scholar 

  4. G. Boillat, T. Ruggeri, On the shock structure problem for hyperbolic system of balance laws and convex entropy. Continuum Mech. Thermodyn. 10, 285 (1998)

    Article  MathSciNet  Google Scholar 

  5. T. Ruggeri, S. Simić, On the hyperbolic system of a mixture of eulerian fluids: a comparison between single and multi-temperature models. Math. Meth. Appl. Sci. 30, 827 (2007)

    Article  MathSciNet  Google Scholar 

  6. T. Ruggeri, A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems: Relativistic fluid dynamics. Ann. Inst. H. Poincaré Sect. A 34, 65 (1981)

    MathSciNet  MATH  Google Scholar 

  7. G. Boillat, T. Ruggeri, Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Rational Mech. Anal. 137, 305 (1997)

    Article  MathSciNet  Google Scholar 

  8. G. Boillat, Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systémes hyperboliques. C. R. Acad. Sci. Paris A 278, 909 (1974)

    MathSciNet  MATH  Google Scholar 

  9. T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws. The structure of the extended thermodynamics. Continuum Mech. Thermodyn. 1, 3 (1989)

    Article  Google Scholar 

  10. Y. Shizuta, S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249 (1985)

    Article  MathSciNet  Google Scholar 

  11. B. Hanouzet, R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Rational Mech. Anal. 169, 89 (2003)

    Article  MathSciNet  Google Scholar 

  12. W-A. Yong, Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal. 172, 247 (2004)

    Article  MathSciNet  Google Scholar 

  13. S. Bianchini, B. Hanouzet, R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math. 60, 1559 (2007)

    Article  MathSciNet  Google Scholar 

  14. T. Ruggeri, D. Serre, Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quart. Appl. Math. 62, 163 (2004)

    Article  MathSciNet  Google Scholar 

  15. J. Lou, T. Ruggeri, Acceleration waves and weak Shizuta-Kawashima condition. Suppl. Rend. Circ. Mat. Palermo 78, 187 (2006)

    MathSciNet  MATH  Google Scholar 

  16. T. Ruggeri, Global existence of smooth solutions and stability of the constant state for dissipative hyperbolic systems with applications to extended thermodynamics, in Trends and Applications of Mathematics to Mechanics STAMM 2002 (Springer, Berlin, 2005)

    Google Scholar 

  17. T. Ruggeri, Entropy principle and relativistic extended thermodynamics: global existence of smooth solutions and stability of equilibrium state. Il Nuovo Cimento B 119, 809 (2004); Lecture notes of the International Conference in honour of Y. Choquet-Bruhat: analysis, Manifolds and Geometric Structures in Physics, ed. by G. Ferrarese, T. Ruggeri (2004)

    Google Scholar 

  18. T. Ruggeri, Extended relativistic thermodynamics, in General Relativity and the Einstein Equations, ed. by Y. Choquet Bruhat (Oxford University, Oxford, 2009), pp. 334–340

    Google Scholar 

  19. K.O. Friedrichs, P.D. Lax, Systems of conservation equation with a convex extension. Proc. Nat. Acad. Sci. USA 68, 1686 (1971)

    MathSciNet  MATH  Google Scholar 

  20. T. Ruggeri, Convexity and symmetrization in relativistic theories. Privileged time-like congruence and entropy. Continuum Mech. Thermodyn. 2, 163 (1990)

    Google Scholar 

  21. S.K. Godunov, An interesting class of quasilinear systems. Sov. Math. 2, 947 (1961)

    MATH  Google Scholar 

  22. G. Boillat, in Recent Mathematical Methods in Nonlinear Wave Propagation. CIME Course, Lecture Notes in Mathematics, vol. 1640, ed. by T. Ruggeri (Springer, Berlin, 1995), pp. 103–152

    Google Scholar 

  23. T. Ruggeri, Godunov Symmetric systems and rational extended thermodynamics, in Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov’s Legacy, ed. by G.V. Demidenko, E. Romenski, E. Toro, M. Dumbser (Springer, Cham, 2020), 321. ISBN 978-3-030-38869-0

    Google Scholar 

  24. I.-S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rational Mech. Anal. 46, 131 (1972)

    MathSciNet  MATH  Google Scholar 

  25. G. Boillat, Involutions des systèmes conservatifs. C. R. Acad. Sci. Paris 307, 891 (1988)

    MathSciNet  MATH  Google Scholar 

  26. C.M. Dafermos, Quasilinear hyperbolic systems with involutions. Arch. Rat. Mech. Analys. 94, 373 (1986)

    MathSciNet  MATH  Google Scholar 

  27. S. Gavrilyuk, H. Gouin, Symmetric form of governing equations for capillary fluids, in Monographs and Surveys in Pure and Applied Mathematics, vol. 106, ed. by G. Iooss, O. Gues̀, A. Nouri (Chapman & Hall/CRC, London, 2000), pp. 306–312

    Google Scholar 

  28. H. Gouin, T. Ruggeri, Symmetric form for the hyperbolic-parabolic system of fourth-gradient fluid model, Ric. Mat. 66, 491 (2017)

    MathSciNet  MATH  Google Scholar 

  29. H. Gouin, Symmetric forms for hyperbolic-parabolic systems of multi-gradient fluids. ZAMM (2019). https://doi.org/10.1002/zamm.201800188

  30. T. Ruggeri, Maximum of entropy density in equilibrium and minimax principle for an hyperbolic system of balance laws, in Contributions to Continuum Theories, Anniversary Volume for Krzysztof Wilmanski, ed. by B. Albers (2000), pp.207–214. WIAS-Report No.18

    Google Scholar 

  31. S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. R. Soc. Edimburgh 106A, 169 (1987)

    MATH  Google Scholar 

  32. A.E. Fischer, J.E. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system. Commun. Math. Phys. 28, 1 (1972)

    MathSciNet  MATH  Google Scholar 

  33. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Springer, New York, 1984)

    MATH  Google Scholar 

  34. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics 3rd edn. Grundlehren der Mathematischen Wissenschaften, vol. 325 (Springer, Berlin, 2010)

    Google Scholar 

  35. T. Nishida, Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics (Département de Mathematique, Université de Paris-Sud/Mathématiques d’Orsay, No. 78-02, Orsay, 1978)

    Google Scholar 

  36. L. Hsiao, T.-P. Liu, Convergence to non linear diffusion waves for solutions of a system of hyperbolic conservation laws with dam**. Commun. Math. Physics 143, 599 (1992)

    MATH  Google Scholar 

  37. Y. Zeng, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Ration. Mech. Anal. 150, 255 (1999)

    MathSciNet  Google Scholar 

  38. C.M. Dafermos, Periodic BV solutions of hyperbolic balance laws with dissipative source. J. Math. Anal. Appl. 428, 405 (2015)

    MathSciNet  MATH  Google Scholar 

  39. S. Pennisi, T. Ruggeri, A new method to exploit the entropy principle and galilean invariance in the macroscopic approach of extended thermodynamics. Ric. Mat. 55, 159 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruggeri, T., Sugiyama, M. (2021). Mathematical Structure. In: Classical and Relativistic Rational Extended Thermodynamics of Gases. Springer, Cham. https://doi.org/10.1007/978-3-030-59144-1_2

Download citation

Publish with us

Policies and ethics

Navigation