• 489 Accesses

Abstract

In this chapter, before going into details, we give an overview of the present book, starting with a short history of nonequilibrium thermodynamics and the upbringing of Rational Extended Thermodynamics (RET) of rarefied monatomic gases. The new version of RET includes the 14-field theory of rarefied polyatomic gases that reduces to the classical Navier–Stokes and Fourier theory in the parabolic limit (Maxwellian iteration), to the 13-field RET theory of monatomic gases in a singular monatomic-gas limit, and to the RET theory with 6 fields as a subsystem. The 6-field theory is the minimal dissipative system, where the dissipation is only due to the dynamic pressure, after the Euler system of perfect fluids. For rarefied polyatomic gases, we discuss a theory of molecular ET with an arbitrary number of field variables by using the method of closure based on either the maximum entropy principle or the entropy principle. It can be proved that the two methods are equivalent to each other. Several applications of the RET theory of polyatomic gases are reviewed as well.

In the case of high temperature where both molecular rotational and vibrational modes exist, these modes should be taken into account individually to make the RET theory more realistic. A relativistic theory of polyatomic gas is presented, and its classical and ultra-relativistic limits are also discussed. In particular, the classical limit gives a precise structure of hierarchies of moments. We discuss also some recent tentatives for constructing a phenomenological RET theory of dense gases.

Moreover, in both classical and relativistic frameworks, we discuss the theory of a mixture of gases with multi-temperature, i.e., a mixture in which each component has its own temperature. We also show an analogy between the behavior of mixture of gases and the collective behavior of many-body system, and extend the Cucker-Smale flocking model to the model with the temperature field and also to the model in the relativistic framework.

The qualitative analysis of the differential system is also done by taking into account the fact that, due to the convexity of the entropy, there exists a privileged field (main field) such that the system becomes symmetric hyperbolic. The existence of global smooth solutions and the convergence to equilibrium are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We adopt the summation convention, i.e., we take summation over repeated indexes: i, j = 1,  2,  3.

  2. 2.

    In computer simulations by the molecular-dynamics method, the kinetic temperature has been exclusively adopted as the temperature in nonequilibrium.

References

  1. I. Müller, W. Weiss, Entropy and Energy, A Universal Competition (Springer, Berlin, 2005)

    MATH  Google Scholar 

  2. I. Müller, Entropy and energy, a universal competition. Entropy 10, 462 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Fermi, Thermodynamics (Dover, New York, 1956)

    MATH  Google Scholar 

  4. I. Müller, A History of Thermodynamics, The Doctrine of Energy and Entropy (Springer, Berlin, 2007)

    MATH  Google Scholar 

  5. I. Müller, Thermodynamics (Pitman, Boston, 1985)

    MATH  Google Scholar 

  6. H.B. Callen, Thermodynamics (Wiley, New York, 1960)

    MATH  Google Scholar 

  7. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1963)

    MATH  Google Scholar 

  8. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1958)

    MATH  Google Scholar 

  9. L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, in Lecture Notes in Mathematics, vol. 1971 (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  10. M. Slemrod, From Boltzmann to Euler: Hilbert’s 6th problem revisited. Comput. Math. Appl. 65, 1497 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.N. Gorban, I. Karlin, Hilbert’s 6th problem: exact and approximate hydrodynamic manifolds for kinetic equations. Bull. Am. Math. Soc. 51, 186 (2014)

    MathSciNet  MATH  Google Scholar 

  12. T. Ruggeri, M. Sugiyama, Rational extended thermodynamics: a link between kinetic theory and continuum theory. Rend. Fis. Acc. Lincei. 31, 33 (2020)

    Article  Google Scholar 

  13. H. Spohn, in Large Scale Dynamics of Interacting Particles. Springer Series: Theoretical and Mathematical Physics (Springer, Berlin, 1991)

    Google Scholar 

  14. C.B. Morrey, On the derivation of the equations of hydrodynamics from statistical mechanics. Commun. Pure Appl. Math. 8, 279 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik, vol. 12 (Springer, Heidelberg, 1958), pp. 205–294

    Google Scholar 

  16. O.E. Lanford, Time evolution of large classical dynamical system, in Lecture Notes Physics, vol. 38 (Springer, Berlin, 1975), pp. 1–111

    Google Scholar 

  17. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University, Cambridge, 1970)

    MATH  Google Scholar 

  18. T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the incompressible Euler equation. Commun. Math. Phys. 61, 119 (1978)

    Article  MATH  Google Scholar 

  19. R. Caflisch, The fluid dynamical limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33, 651 (1980)

    Article  MATH  Google Scholar 

  20. C. Eckart, The thermodynamics of irreversible processes I. The single fluids. Phys. Rev. 58, 267 (1940)

    MATH  Google Scholar 

  21. C. Carathéodory, Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355 (1909)

    Article  MathSciNet  Google Scholar 

  22. L. Pogliani, M.N. Berberan-Santos, Constantin Carathéodory and the axiomatic thermodynamics. J. Math. Chem. 28, 1–3 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.B. Boyling, Caratheodory’s principle and the existence of global integrating factors. Commun. Math. Phys. 10, 52 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Pottier, Nonequilibrium Statistical Physics (Oxford University, Oxford, 2010)

    MATH  Google Scholar 

  25. I. Müller, T. Ruggeri, Rational Extended Thermodynamics, 2nd edn. (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  26. C. Cattaneo, Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83 (1948)

    MathSciNet  MATH  Google Scholar 

  27. D.D. Joseph, L. Preziosi, Heat waves. Rev. Mod. Phys. 61, 41 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. D.D. Joseph, L. Preziosi, Addendum to the paper Heat waves. Rev. Mod. Phys. 62, 375 (1990)

    Article  Google Scholar 

  29. B. Straughan, Heat Waves (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  30. B.D. Coleman, M. Fabrizio, D.R. Owen, On the thermodynamics of second sound in dielectric crystals. Arch. Rat. Mech. 80, 135 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Morro, T. Ruggeri, Non equilibrium properties of solids through second sound measurements. J. Phys. C Solid State Phys. 21, 1743 (1988)

    Article  Google Scholar 

  32. T. Ruggeri, Struttura dei sistemi alle derivate parziali compatibili con un principio di entropia e termodinamica estesa. Suppl. Boll. UMI. 261, 4 (1985)

    Google Scholar 

  33. T. Ruggeri, The binary mixtures of Euler fluids: a unified theory of second sound phenomena, in Continuum Mechanics and Applications in Geophysics and the Environment, eds. by B. Straughan, R. Greve, H. Ehrentraut, Y. Wang (Springer, Berlin, 2001), pp.79–91

    Google Scholar 

  34. R. Spigler, More around Cattaneo equation to describe heat transfer processes. Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6336

  35. A. Sellitto, V. Zampoli, P.M. Jordan, Second-sound beyond Maxwell-Cattaneo: Nonlocal effects in hyperbolic heat transfer at the nanoscale. Int. J. Eng. Sci. 154, 103328 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Landau, Theory of the superfluidity of Helium II. J. Physique U.S.S.R. 5, 71 (1941)

    Google Scholar 

  37. V. Peshkov, Second sound in Helium II. J. Phys. U.S.S.R. 8, 381 (1944)

    Google Scholar 

  38. L.A. Sidorenkov, M. K. Tey, R. Grimm, Y.-H. Hou, L. Pitaevskii, S. Stringari, Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Nature 498, 78 (2013)

    Article  Google Scholar 

  39. T. Ruggeri, A. Muracchini, L. Seccia, Shock waves and second sound in a rigid heat conductor: A critical temperature for NaF and Bi. Phys. Rev. Lett. 64, 2640 (1990)

    Article  Google Scholar 

  40. T. Ruggeri, A. Muracchini, L. Seccia, Continuum approach to phonon gas and shape changes of second sound via shock wave theory. Nuovo Cimento D 16, 15 (1994)

    Article  Google Scholar 

  41. T. Ruggeri, A. Muracchini, L. Seccia, Second sound and characteristic temperature in solids. Phys. Rev. B 54, 332 (1996)

    Article  MATH  Google Scholar 

  42. F. Ancona, A. Marson, A wavefront tracking algorithm for N × N nongenuinely nonlinear conservation laws. J. Differ. Equ. 177, 454 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. R.A. Guyer, J A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766 (1966)

    Google Scholar 

  44. R.A. Guyer, J.A. Krumhansl, Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778 (1966)

    Article  Google Scholar 

  45. W. Dreyer, H. Struchtrup, Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3 (1993)

    Article  MathSciNet  Google Scholar 

  46. W. Larecki, Z. Banach, Influence of nonlinearity of the phonon dispersion relation on wave velocities in the four-moment maximum entropy phonon hydrodynamics. Phys. D 266, 65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. W. Larecki, Z. Banach, Consistency of the phenomenological theories of wave-type heat transport with the hydrodynamics of a phonon gas. J. Phys. A Math. Theor. 43, 385501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. B.-Y. Cao, M. Grmela, Z.-Y. Guo, Y.-C. Hua, B.-D. Nie, Two temperature extension of phonon hydrodynamics. J. Non-Equilib. Thermodyn. 45, 291 (2020)

    Article  Google Scholar 

  49. I. Müller, Zur Ausbreitungsgeschwindigkeit von Störungen in Kontinuierlichen Medien, PhD thesis (RWTH Aachen University, Aachen, 1966)

    Google Scholar 

  50. W. Israel, Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100, 310 (1976)

    Article  MathSciNet  Google Scholar 

  51. D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics, 4th edn. (Springer, Heidelberg, 2010)

    Book  MATH  Google Scholar 

  52. G. Lebon, D. Jou, J. Casas-Vázquez, Understanding Non-equilibrium Thermodynamics (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  53. T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid. Acta Mech. 47, 167 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  54. I.-S. Liu, I. Müller, Extended thermodynamics of classical and degenerate ideal gases. Arch. Rat. Mech. Anal. 83, 285 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  55. I.-S. Liu, I. Müller, T. Ruggeri, Relativistic thermodynamics of gases. Ann. Phys. 169, 191 (1986)

    Article  MathSciNet  Google Scholar 

  56. I. Müller, T. Ruggeri, Extended Thermodynamics, 1st edn. (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  57. C. Truesdell, Rational Thermodynamics (McGraw-Hill, New York, 1969)

    MATH  Google Scholar 

  58. B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mach. Anal. 13, 167 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  59. I. Müller, On the entropy inequality, Arch. Rational Mech. Anal. 26, 118 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media (Springer, Berlin, 1997)

    Book  MATH  Google Scholar 

  61. M. Grmela, H.C. Öttinger, Dynamics and thermodynamics of complex fluids I. Development of a generic formalism. Phys. Rev. E 56, 6620 (1997)

    Google Scholar 

  62. H.C. Öttinger, M. Grmela, Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56, 6633 (1997)

    Article  Google Scholar 

  63. H.C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, Hoboken, 2004)

    Google Scholar 

  64. M. Grmela, GENERIC guide to the multiscale dynamics and thermodynamics. J. Phys. Commun. 2, 032001 (2018)

    Article  Google Scholar 

  65. I. Peshkov, M. Pavelka, E. Romenski, M. Grmela, Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Continuum Mech. Thermodyn. 30, 1343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  66. S.K. Godunov, E.I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Kluwer Academic/Plenum Publishers, New York, 2003)

    Book  MATH  Google Scholar 

  67. I. Müller, D. Reitebuch, W. Weiss, Extended thermodynamics—consistent in order of magnitude. Contin. Mech. Thermodyn. 15, 113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  68. B.C. Eu, Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics. Nonrelativistic Theories, vol. 1 (Springer, Switzerland, 2016)

    Google Scholar 

  69. B.C. Eu, Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics. Relativistic Theories, vol. 2 (Springer, Switzerland, 2016)

    Google Scholar 

  70. I. Gyarmati, Non-Equilibrium Thermodynamics, Field Theory and Variational Principles (Springer, Berlin, 1970)

    Book  Google Scholar 

  71. V.A. Cimmelli, D. Jou, T. Ruggeri, P. Ván, Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  72. D. Jou, Relationships between rational extended thermodynamics and extended irreversible thermodynamics. Phil. Trans. R. Soc. A. 37820190172 (2020). https://doi.org/10.1098/rsta.2019.0172

  73. H.C. Öttinger, H. Struchtrup, M. Torrilhon, Formulation of moment equations for rarefied gases within two frameworks of non-equilibrium thermodynamics: RET and GENERIC. Phil. Trans. R. Soc. A. 37820190174 (2020). https://doi.org/10.1098/rsta.2019.0174

  74. I. Müller, W. Weiss, Thermodynamics of irreversible processes—past and present. Eur. Phys. J. H 37, 139 (2012)

    Article  Google Scholar 

  75. M. Torrilhon, H. Struchtrup, Regularized 13 moment equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513, 171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  76. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows (Springer, Berlin, 2005)

    Book  MATH  Google Scholar 

  77. A. Bobylev, Å. Windfäll, Boltzmann equation and hydrodynamics at the Burnett level. Kinet. Rel. Models (KRM) 5-2, 237 (2012)

    Google Scholar 

  78. M.N. Kogan, Rarefied Gas Dynamics (Springer, New York, 1969)

    Book  Google Scholar 

  79. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1988)

    Book  MATH  Google Scholar 

  80. Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhäuser, Boston, 2002)

    Book  MATH  Google Scholar 

  81. Y. Sone, Molecular Gas Dynamics, Theory, Techniques, and Applications (Birkhäuser, Boston, 2007)

    Book  MATH  Google Scholar 

  82. I. Müller, Entropy: a subtle concept in thermodynamics, in Entropy, eds. by A. Greven, G. Keller, G. Warnecke (Princeton University, Princeton, 2003). Chapter 2

    Google Scholar 

  83. D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974)

    Google Scholar 

  84. H. Grad, On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  85. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957); E.T. Jaynes, Information theory and statistical mechanics II. Phys. Rev. 108, 171 (1957)

    Google Scholar 

  86. J.N. Kapur, Maximum Entropy Models in Science and Engineering (Wiley, New York, 1989)

    MATH  Google Scholar 

  87. M.N. Kogan, On the principle of maximum entropy, in Rarefied Gas Dynamics, vol. I, 359–368 (Academic Press, New York, 1967)

    Google Scholar 

  88. W. Dreyer, Maximization of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20, 6505 (1987)

    Article  MATH  Google Scholar 

  89. C.D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  90. G. Boillat, T. Ruggeri, Moment equations in the kinetic theory of gases and wave velocities. Continuum Mech. Thermodyn. 9, 205 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  91. P. Degond, C. Ringhofer, Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys. 112, 587 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  92. M. Trovato, L. Reggiani, Maximum entropy principle and hydrodynamic models in statistical mechanics. Riv. Nuovo Cimento Soc. Ital. Fis. 35, 99 (2012)

    MATH  Google Scholar 

  93. W. Larecki, Z. Banach, Entropic derivation of the spectral Eddington factors. J. Quant. Spectrosc. Radiat. Transfer 11, 22486 (2011)

    Google Scholar 

  94. W. Larecki, Z. Banach, One-dimensional maximum entropy radiation hydrodynamics: three-moment theory. J. Phys. A Math. Theor. 45, 385501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  95. M. Junk, Domain of definition of Levermore’s five-moment system. J. Stat. Phys. 93, 1143 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  96. M. Junk, Maximum entropy for reduced moment problems. Math. Models Methods Appl. Sci. 10, 1001 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  97. M. Junk, A. Unterreiter, Maximum entropy moment systems and Galilean invariance. Continuum Mech. Thermodyn. 14, 563 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  98. W. Dreyer, M. Kunik, Maximum entropy principle revisited. Continuum Mech. Thermodyn. 10, 331 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  99. G.M. Kremer, An Introduction to the Boltzmann Equation and Transport Processes in Gases (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  100. I.-S. Liu, Extended thermodynamics of fluids and virial equations of state. Arch. Rational Mech. Anal. 88, 1 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  101. G.M. Kremer, Extended thermodynamics of non-ideal gases. Physica A 144, 156 (1987)

    Article  Google Scholar 

  102. G.M. Kremer, On extended thermodynamics of ideal and real gases, in Extended Thermodynamics Systems, eds. by S. Sieniutycz, P. Salamon (Taylor and Francis, New York, 1992)

    Google Scholar 

  103. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of dense gases. Continuum Mech. Thermodyn. 24, 271 (2011)

    Article  MATH  Google Scholar 

  104. E. Ikenberry, C. Truesdell, On the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory. J. Rational Mech. Anal. 5, 1 (1956)

    MathSciNet  MATH  Google Scholar 

  105. T. Ruggeri, Can constitutive relations be represented by non-local equations? Quart. Appl. Math. 70, 597 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  106. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Continuum Mech. Thermodyn. 25, 727 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  107. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, A study of linear waves based on extended thermodynamics for rarefied polyatomic gases. Acta Appl. Math. 132, 15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  108. T. Arima, S. Taniguchi, M. Sugiyama, Light scattering in rarefied polyatomic gases based on extended thermodynamics. Proc. Symp. Ultrasonic Electronics 34, 15 (2013)

    MATH  Google Scholar 

  109. S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory. Phys. Rev. E 89, 013025 (2014)

    Article  Google Scholar 

  110. S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Shock wave structure in a rarefied polyatomic gas based on extended thermodynamics. Acta Appl. Math. 132, 583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  111. E. Barbera, F. Brini, M. Sugiyama, Heat transfer problem in a van der Waals gas, Acta Appl. Math. 132, 41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  112. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Monatomic rarefied gas as a singular limit of poyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  113. C. Borgnakke, P.S. Larsen, Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18, 405 (1975)

    Article  Google Scholar 

  114. J.-F. Bourgat, L. Desvillettes, P. Le Tallec, B. Perthame, Microreversible collisions for polyatomic gases. Eur. J. Mech. B/Fluids 13, 237 (1994)

    MathSciNet  MATH  Google Scholar 

  115. M. Pavić, T. Ruggeri, S. Simić, Maximum entropy principle for rarefied polyatomic gases. Physica A 392, 1302 (2013)

    Article  MathSciNet  Google Scholar 

  116. T. Ruggeri, Maximum entropy principle closure for 14-moment system for a non-polytropic gas. Ric. Mat. (2020). https://doi.org/10.1007/s11587-020-00510-y

  117. I.M. Gamba, M. Pavić-Čolić, On the Cauchy Problem for Boltzmann Equation Modelling a Polyatomic Gas (2020). ar**v:2005.01017 [math-ph]

    Google Scholar 

  118. S.-B. Yun, Ellipsoidal BGK model for polyatomic molecules near Maxwellians: a dichotomy in the dissipation estimate. J. Differ. Equ. 266, 5566 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  119. T. Arima, A. Mentrelli, T. Ruggeri, Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  120. G. Boillat, T. Ruggeri, On the evolution law of the weak discontinuities for hyperbolic quasi-linear systems. Wave Motion 1, 149 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  121. T. Ruggeri, Stability and discontinuity waves for symmetric hyperbolic systems, in Non-Linear Wave Motion ed. by A. Jeffrey (Longman Press, New York, 1989), pp.148–161

    Google Scholar 

  122. A. Muracchini, T. Ruggeri, L. Seccia, Dispersion relation in the high frequency limit and non-linear wave stability for hyperbolic dissipative systems. Wave Motion 15, 143 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  123. Z. Banach, W. Larecki, T. Ruggeri, Dispersion relation in the limit of high frequency for a hyperbolic system with multiple eigenvalues. Wave Motion 51, 955 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  124. G. Boillat, T. Ruggeri, On the shock structure problem for hyperbolic system of balance laws and convex entropy. Continuum Mech. Thermodyn. 10, 285 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  125. T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Monatomic gas as a singular limit of polyatomic gas in molecular extended thermodynamics with many moments. Ann. Phys. 372, 83 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  126. M.S. Cramer, Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24, 066102 (2012)

    Article  Google Scholar 

  127. S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)

    Article  MATH  Google Scholar 

  128. T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, On the six-field model of fluids based on extended thermodynamics. Meccanica 49, 2181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  129. J. Meixner, Absorption und dispersion des schalles in gasen mit chemisch reagierenden und anregbaren komponenten. I. Teil. Ann. Phys. 43, 470 (1943)

    Google Scholar 

  130. J. Meixner, Allgemeine theorie der schallabsorption in gasen und flussigkeiten unter berucksichtigung der transporterscheinungen. Acoustica 2, 101 (1952)

    MathSciNet  Google Scholar 

  131. T. Ruggeri, Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure. Bull. Inst. Math. Acad. Sin. 11, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  132. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Nonlinear extended thermodynamics of real gases with 6 fields. Int. J. Non-Linear Mech. 72, 6 (2015)

    Article  MATH  Google Scholar 

  133. S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Overshoot of the nonequilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Int. J. Non-Linear Mech. 79, 66 (2015)

    Article  Google Scholar 

  134. M. Bisi, T. Ruggeri, G. Spiga, Dynamical pressure in a polyatomic gas: interplay between kinetic theory and extended thermodynamic. Kinet. Relat. Mod. 11, 71 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  135. T. Arima, T. Ruggeri, M. Sugiyama, Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes. Phys. Rev. E 96, 042143 (2017)

    Article  Google Scholar 

  136. T. Arima, T. Ruggeri, M. Sugiyama, Extended thermodynamics of rarefied polyatomic gases: 15-field theory incorporating relaxation processes of molecular rotation and vibration. Entropy 20, 301 (2018)

    Article  Google Scholar 

  137. W.G. Vincenti, C.H. Kruger, Jr., Introduction to Physical Gas Dynamics (Wiley, New York, 1965)

    Google Scholar 

  138. Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, New York, 2002)

    Google Scholar 

  139. E.F. Smiley, E.H. Winkler, Z.I. Slawsky, Measurement of the vibrational relaxation effect in CO2 by means of shock tube interferograms. J. Chem. Phys. 20, 923 (1952)

    Article  Google Scholar 

  140. E.F. Smiley, E.H. Winkler, Shock-tube Measurements of vibrational relaxation. J. Chem. Phys. 22, 2018 (1954)

    Article  Google Scholar 

  141. W.C. Griffith, W. Bleakney, Shock waves in gases, Am. J. Phys. 22, 597 (1954)

    Article  Google Scholar 

  142. W. Griffith, D. Brickl, V. Blackman, Structure of shock waves in polyatomic gases. Phys. Rev. 102, 1209 (1956)

    Article  Google Scholar 

  143. N.H. Johannesen, H.K. Zienkiewicz, P.A. Blythe, J.H. Gerrard, Experimental and theoretical analysis of vibrational relaxation regions in carbon dioxide. J. Fluid Mech. 13, 213 (1962)

    Article  Google Scholar 

  144. W.C. Griffith, A. Kenny, On fully-dispersed shock waves in carbon dioxide. J. Fluid Mech. 3, 286 (1957)

    Article  Google Scholar 

  145. H.A. Bethe, E. Teller, Deviations from Thermal Equilibrium in Shock Waves (Engineering Research Institute/University of Michigan, New York)

    Google Scholar 

  146. D. Gilbarg, D. Paolucci, The structure of shock waves in the continuum theory of fluids. J. Rat. Mech. Anal. 2, 617 (1953)

    MathSciNet  MATH  Google Scholar 

  147. S. Kosuge, K. Aoki, T. Goto, Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation. AIP Conf. Proc. 1786, 180004 (2016)

    Article  Google Scholar 

  148. S. Kosuge, K. Aoki, Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids 3, 023401 (2018)

    Article  Google Scholar 

  149. S. Kosuge, H.-W. Kuo, K. Aoki, A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure. J. Stat. Phys. 177, 209 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  150. T. Arima, T. Ruggeri, M. Sugiyama, Duality principle from rarefied to dense gas and extended thermodynamics with six fields. Phys. Rev. Fluids 2, 013401 (2017)

    Article  Google Scholar 

  151. T. Arima, T. Ruggeri, M. Sugiyama, Rational extended thermodynamics of dense polyatomic gases incorporating molecular rotation and vibration. Phil. Trans. R. Soc. A 378, 20190176 (2020)

    Article  MathSciNet  Google Scholar 

  152. C. Eckart, The thermodynamics of irreversible processes III: Relativistic theory of the simple fluid. Phys. Rev. 58, 919 (1940)

    Article  MATH  Google Scholar 

  153. S. Pennisi, T. Ruggeri, Relativistic extended thermodynamics of rarefied polyatomic gas. Ann. Phys. 377, 414 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  154. M.C. Carrisi, S. Pennisi, T. Ruggeri, Monatomic limit of relativistic extended thermodynamics of polyatomic gas. Continuum Mech. Thermodyn. 31, 401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  155. E. Barbera, I. Müller, M. Sugiyama, On the temperature of a rarefied gas in non-equilibrium. Meccanica 34, 103 (1999)

    Article  MATH  Google Scholar 

  156. J. Au, I. Müller, T. Ruggeri, Temperature jumps at the boundary of a rarefied gas. Cont. Mech. Thermodyn. 12, 19 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  157. J. Casas-Vázquez, D. Jou, Temperature in non-equilibrium states: a review of open problems and current proposals. Rep. Prog. Phys. 66, 1937 (2003)

    Article  Google Scholar 

  158. T. Ruggeri, S. Simić, On the hyperbolic system of a mixture of eulerian fluids: a comparison between single and multi-temperature models. Math. Meth. Appl. Sci. 30, 827 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  159. H. Gouin, T. Ruggeri, Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids. Phys. Rev. E 78, 016303 (2008)

    Article  Google Scholar 

  160. T. Ruggeri, S. Simić, Average temperature and Maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009)

    Article  Google Scholar 

  161. S.-Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model. Arch. Ration Mech. Anal. 223, 1397 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  162. F. Cucker, S. Smale, Emergent behavior in flocks. IEEE Trans. Automat. Control 52, 852 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  163. S.-Y. Ha, J. Kim, T. Ruggeri, From the relativistic mixture of gases to the relativistic Cucker-Smale flocking. Arch. Rational Mech. Anal. 235, 1661–1706 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  164. T. Ruggeri, A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems: Relativistic fluid dynamics. Ann. Inst. H. Poincaré Sect. A 34, 65 (1981)

    MathSciNet  MATH  Google Scholar 

  165. G. Boillat, T. Ruggeri, Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Rational Mech. Anal. 137, 305 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  166. G. Boillat, Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systémes hyperboliques. C. R. Acad. Sci. Paris A 278, 909 (1974)

    MathSciNet  MATH  Google Scholar 

  167. T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws. The structure of the extended thermodynamics. Continuum Mech. Thermodyn. 1, 3 (1989)

    Article  MATH  Google Scholar 

  168. Y. Shizuta, S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  169. B. Hanouzet, R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Rational Mech. Anal. 169, 89 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  170. W-A. Yong, Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal. 172, 247 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  171. S. Bianchini, B. Hanouzet, R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math. 60, 1559 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  172. T. Ruggeri, D. Serre, Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quart. Appl. Math. 62, 163 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  173. J. Lou, T. Ruggeri, Acceleration waves and weak Shizuta-Kawashima condition. Suppl. Rend. Circ. Mat. Palermo 78, 187 (2006)

    MathSciNet  MATH  Google Scholar 

  174. T. Ruggeri, Global existence of smooth solutions and stability of the constant state for dissipative hyperbolic systems with applications to extended thermodynamics, in Trends and Applications of Mathematics to Mechanics STAMM 2002 (Springer, Berlin, 2005)

    Google Scholar 

  175. T. Ruggeri, Entropy principle and relativistic extended thermodynamics: global existence of smooth solutions and stability of equilibrium state. Il Nuovo Cimento B 119, 809 (2004); Lecture notes of the International Conference in honour of Y. Choquet-Bruhat: analysis, Manifolds and Geometric Structures in Physics, ed. by G. Ferrarese, T. Ruggeri (2004)

    Google Scholar 

  176. T. Ruggeri, Extended relativistic thermodynamics, in General Relativity and the Einstein Equations, ed. by Y. Choquet Bruhat (Oxford University, Oxford, 2009), pp. 334–340

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruggeri, T., Sugiyama, M. (2021). Introduction and Overview. In: Classical and Relativistic Rational Extended Thermodynamics of Gases. Springer, Cham. https://doi.org/10.1007/978-3-030-59144-1_1

Download citation

Publish with us

Policies and ethics

Navigation