Heterogeneous Catalysis by Frustrated Lewis Pairs

  • Chapter
  • First Online:
Frustrated Lewis Pairs

Part of the book series: Molecular Catalysis ((MOLCAT,volume 2))

  • 2161 Accesses

Abstract

Frustrated Lewis pairs (FLPs), featuring reactive Lewis acid and Lewis base sites that can cooperatively activate small molecules, have been exploited in a wide range of homogeneous catalytic reactions since their inception in 2006. However, it is only recently that the tenets of FLP chemistry have been used to develop heterogeneous catalysts, which are advantageous due to their ease of separation from reaction mixtures and the recyclability of the catalyst. This chapter outlines the many different approaches that research groups around the world have taken to synthesise and utilise semi-immobilised or fully immobilised (solid-state) FLP catalysts. This includes supporting the Lewis acid and/or base components on or within a whole host of different materials, including silica, zeolites, metal-organic frameworks (MOFs), polyoxometalate clusters, metal oxides, graphene and hexagonal boron nitride.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIBN:

Azabisisobutyronitrile

atm.:

Atmosphere(s)

ATR:

Attenuated total reflectance

BDC:

Benzenedicarboxylate

BPDC:

4,4′-biphenyldicarboxylate

COD:

1,5-cyclooctadiene

CP:

Cross polarisation

CQD:

Carbon quantum dot

Cy:

Cyclohexyl

DABCO:

1,4-diazabicyclo[2.2.2]octane

DCM:

Dichloromethane

DMF:

N,N-dimethylformamide

DRIFT:

Diffuse reflectance infrared Fourier transform

EDX:

Energy-dispersive X-ray

FLP :

Frustrated Lewis pair

FTIR:

Fourier transform infrared

h:

Hour(s)

HAADF-STEM:

High-angle annular dark-field scanning tunnelling electron microscopy

h-BN:

Hexagonal boron nitride

IR:

Infrared

MD:

Molecular dynamics

MOF:

Metal-organic framework

Mes:

Mesityl, 2,4,6-trimethylphenyl

MS:

Molecular sieves

NHO:

N-heterocyclic olefin

NMR:

Nuclear magnetic resonance

NP:

Nanoparticle

OAc:

Acetate

Pd/CN:

Palladium on nitrogen-doped carbon material

PDOS:

Projected density of states

pin:

Pinacol

POM:

Polyoxometalate

PXRD:

Powder X-ray diffraction

py:

Pyridine

r.t.:

Room temperature

RWGS:

Reverse water gas shift

SDS:

Sodium dodecyl sulfate

SIP:

Surface-initiated polymerisation

TBHP:

Tert-butyl hydroperoxide

TCPP:

Tetrakis(4-carboxyphenyl)porphyrin

TCTB:

Tris(para-carboxylate)tridurylborane

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

TMP:

2,2,6,6-tetramethylpiperidine

XPS:

X-ray photoelectron spectroscopy

α-CD:

α-cyclodextrin

References

  1. de Vries JG, Elsevier CJ (2006) The Handbook of Homogeneous Hydrogenation. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  2. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible, Metal-Free Hydrogen Activation. Science 314:1124–1126. https://doi.org/10.1126/science.1134230

  3. Chase PA, Welch GC, Jurca T, Stephan DW (2007) Metal-Free Catalytic Hydrogenation. Angew Chem Int Ed 46:8050–8053. https://doi.org/10.1002/anie.200702908

  4. Stephan DW (2012) “Frustrated Lewis Pair” Hydrogenations. Org Biomol Chem 10:5740–5746. https://doi.org/10.1039/C2OB25339A

  5. Paradies J (2013) Frustrated Lewis Pair Catalyzed Hydrogenations. Synlett 24:777–780. https://doi.org/10.1055/s-0032-1318312

  6. Hounjet LJ, Stephan DW (2014) Hydrogenation by Frustrated Lewis Pairs: Main Group Alternatives to Transition Metal Catalysts? Org Process Res Dev 18:385–391. https://doi.org/10.1021/op400315m

  7. Lam J, Szkop KM, Mosaferi E, Stephan DW (2019) FLP Catalysis: Main Group Hydrogenations of Organic Unsaturated Substrates. Chem Soc Rev 48:3592–3612. https://doi.org/10.1039/C8CS00277K

  8. Lindqvist M, Borre K, Axenov K, Kótai B, Nieger M, Leskelä M, Pápai I, Repo T (2015) Chiral Molecular Tweezers: Synthesis and Reactivity in Asymmetric Hydrogenation. J Am Chem Soc 137:4038–4041. https://doi.org/10.1021/ja512658m

  9. Meng W, Feng X, Du H (2018) Frustrated Lewis Pairs Catalyzed Asymmetric Metal-Free Hydrogenations and Hydrosilylations. Acc Chem Res 51:191–201. https://doi.org/10.1021/acs.accounts.7b00530

  10. Stephan DW, Erker G (2010) Frustrated Lewis Pairs: Metal-Free Hydrogen Activation and More. Angew Chem Int Ed 49:46–76. https://doi.org/10.1002/anie.200903708

  11. Erker G (2012) Frustrated Lewis Pairs: Some Recent Developments. Pure Appl Chem 84:2203–2217. https://doi.org/10.1351/PAC-CON-12-04-07

  12. Erker G, Stephan DW (2013) Frustrated Lewis Pairs I: Uncovering and Understanding. Top Curr Chem 332:1–311. https://doi.org/10.1007/978-3-642-36697-0

  13. Erker G, Stephan DW (2013) Frustrated Lewis pairs II: Expanding the Scope. Top Curr Chem 334:1–345. https://doi.org/10.1007/978-3-642-37759-4

  14. Stephan DW, Erker G (2014) Frustrated Lewis Pair Chemistry of Carbon, Nitrogen and Sulfur Oxides. Chem Sci 5:2625–2641. https://doi.org/10.1039/C4SC00395K

  15. Stephan DW (2015) Frustrated Lewis Pairs. J Am Chem Soc 137:10018–10032. https://doi.org/10.1021/jacs.5b06794

  16. Oestreich M, Hermeke J, Mohr J (2015) A Unified Survey of Si–H and H–H Bond Activation Catalysed by Electron-Deficient Boranes. Chem Soc Rev 44:2202–2220. https://doi.org/10.1039/C4CS00451E

  17. Stephan DW (2015) Frustrated Lewis Pairs: From Concept to Catalysis. Acc Chem Res 48:306–316. https://doi.org/10.1021/ar500375j

  18. Stephan DW, Erker G (2015) Frustrated Lewis Pair Chemistry: Development and Perspectives. Angew Chem Int Ed 54:6400–6441. https://doi.org/10.1002/anie.201409800

  19. Weicker SA, Stephan DW (2015) Main Group Lewis Acids in Frustrated Lewis Pair Chemistry: Beyond Electrophilic Boranes. Bull Chem Soc Jpn 88:1003–1016. https://doi.org/10.1246/bcsj.20150131

  20. Stephan DW (2016) The Broadening Reach of Frustrated Lewis Pair Chemistry. Science 354:aaf7229. https://doi.org/10.1126/science.aaf7229

  21. Scott DJ, Fuchter MJ, Ashley AE (2017) Designing Effective ‘Frustrated Lewis Pair’ Hydrogenation Catalysts. Chem Soc Rev 46:5689–5700. https://doi.org/10.1039/C7CS00154A

  22. Boom DHA, Jupp AR, Slootweg JC (2019) Dehydrogenation of Amine–Boranes Using p-Block Compounds. Chem – Eur J 25:9133–9152. https://doi.org/10.1002/chem.201900679

  23. Paradies J (2019) Mechanisms in Frustrated Lewis Pair-Catalyzed Reactions. Eur J Org Chem 2019:283–294. https://doi.org/10.1002/ejoc.201800944

  24. Jupp AR, Stephan DW (2019) New Directions for Frustrated Lewis Pair Chemistry. Trends Chem 1:35–48. https://doi.org/10.1016/j.trechm.2019.01.006

  25. Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of Heterogeneous Catalysis. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  26. Rothenberg G (2017) Catalysis: Concepts and Green Applications, 2nd edn. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  27. Primo A, Garcia H (2014) Zeolites as Catalysts in Oil Refining. Chem Soc Rev 43:7548–7561. https://doi.org/10.1039/C3CS60394F

  28. Ma Y, Zhang S, Chang C-R, Huang Z-Q, Ho JC, Qu Y (2018) Semi-Solid and Solid Frustrated Lewis Pair Catalysts. Chem Soc Rev 47:5541–5553. https://doi.org/10.1039/C7CS00691H

  29. Szeto KC, Sahyoun W, Merle N, Castelbou JL, Popoff N, Lefebvre F, Raynaud J, Godard C, Claver C, Delevoye L, Gauvin RM, Taoufik M (2016) Development of Silica-Supported Frustrated Lewis Pairs: Highly Active Transition Metal-Free Catalysts for the Z-Selective Reduction of Alkynes. Catal Sci Technol 6:882–889. https://doi.org/10.1039/C5CY01372K

  30. Pelletier J, Espinas J, Vu N, Norsic S, Baudouin A, Delevoye L, Trébosc J, Roux EL, Santini C, Basset J-M, Gauvin RM, Taoufik M (2011) A Well-Defined Silica-Supported Aluminium Alkyl Through an Unprecedented, Consecutive Two-Step Protonolysis–Alkyl Transfer Mechanism. Chem Commun 47:2979–2981. https://doi.org/10.1039/C0CC04986G

  31. Johnstone TC, Wee GNJH, Stephan DW (2018) Accessing Frustrated Lewis Pair Chemistry from a Spectroscopically Stable and Classical Lewis Acid-Base Adduct. Angew Chem Int Ed 57:5881–5884. https://doi.org/10.1002/anie.201802385

  32. Chernichenko K, Madarász Á, Pápai I, Nieger M, Leskelä M, Repo T (2013) A Frustrated-Lewis-Pair Approach to Catalytic Reduction of Alkynes to cis-Alkenes. Nat Chem 5:718–723. https://doi.org/10.1038/nchem.1693

  33. Trunk M, Teichert JF, Thomas A (2017) Room-Temperature Activation of Hydrogen by Semi-Immobilized Frustrated Lewis Pairs in Microporous Polymer Networks. J Am Chem Soc 139:3615–3618. https://doi.org/10.1021/jacs.6b13147

  34. Schmidt J, Werner M, Thomas A (2009) Conjugated Microporous Polymer Networks via Yamamoto Polymerization. Macromolecules 42:4426–4429. https://doi.org/10.1021/ma9005473

  35. Willms A, Schumacher H, Tabassum T, Qi L, Scott SL, Hausoul PJC, Rose M (2018) Solid Molecular Frustrated Lewis Pairs in a Polyamine Organic Framework for the Catalytic Metal-Free Hydrogenation of Alkenes. ChemCatChem 10:1835–1843. https://doi.org/10.1002/cctc.201701783

  36. Inés B, Palomas D, Holle S, Steinberg S, Nicasio JA, Alcarazo M (2012) Metal-Free Hydrogenation of Electron-Poor Allenes and Alkenes. Angew Chem Int Ed 51:12367–12369. https://doi.org/10.1002/anie.201205348

  37. Mahdi T, Stephan DW (2014) Enabling Catalytic Ketone Hydrogenation by Frustrated Lewis Pairs. J Am Chem Soc 136:15809–15812. https://doi.org/10.1021/ja508829x

  38. Scott DJ, Fuchter MJ, Ashley AE (2014) Nonmetal Catalyzed Hydrogenation of Carbonyl Compounds. J Am Chem Soc 136:15813–15816. https://doi.org/10.1021/ja5088979

  39. Mahdi T, Stephan DW (2015) Facile Protocol for Catalytic Frustrated Lewis Pair Hydrogenation and Reductive Deoxygenation of Ketones and Aldehydes. Angew Chem Int Ed 54:8511–8514. https://doi.org/10.1002/anie.201503087

  40. Hong M, Chen J, Chen EY-X (2018) Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid-Base Pairs. Chem Rev 118:10551–10616. https://doi.org/10.1021/acs.chemrev.8b00352

  41. Hou L, Liang Y, Wang Q, Zhang Y, Dong D, Zhang N (2018) Lewis Pair-Mediated Surface-Initiated Polymerization. ACS Macro Lett 7:65–69. https://doi.org/10.1021/acsmacrolett.7b00903

  42. Patrow JG, Wang Y, Dawlaty JM (2018) Interfacial Lewis Acid-Base Adduct Formation Probed by Vibrational Spectroscopy. J Phys Chem Lett 9:3631–3638. https://doi.org/10.1021/acs.jpclett.8b00470

  43. **ng J-Y, Buffet J-C, Rees NH, Nørby P, O’Hare D (2016) Hydrogen Cleavage by Solid-Phase Frustrated Lewis Pairs. Chem Commun 52:10478–10481. https://doi.org/10.1039/C6CC04937K

  44. Wanglee Y-J, Hu J, White RE, Lee M-Y, Stewart SM, Perrotin P, Scott SL (2012) Borane-Induced Dehydration of Silica and the Ensuing Water-Catalyzed Grafting of B(C6F5)3 to Give a Supported, Single-Site Lewis Acid, ≡ SiOB(C6F5)2. J Am Chem Soc 134:355–366. https://doi.org/10.1021/ja207838j

  45. Tian J, Wang S, Feng Y, Li J, Collins S (1999) Borane-Functionalized Oxide Supports: Development of Active Supported Metallocene Catalysts at Low Aluminoxane Loading. J Mol Catal Chem 144:137–150. https://doi.org/10.1016/S1381-1169(98)00341-0

  46. Wass DF, Chapman AM (2013) Frustrated Lewis Pairs Beyond the Main Group: Transition Metal-Containing Systems. In: Erker G, Stephan DW (eds) Frustrated Lewis pairs II: Expanding the Scope. Springer, Berlin, Heidelberg, pp 261–280

    Google Scholar 

  47. Flynn SR, Wass DF (2013) Transition Metal Frustrated Lewis Pairs. ACS Catal 3:2574–2581. https://doi.org/10.1021/cs400754w

  48. Campos J (2017) Dihydrogen and Acetylene Activation by a Gold(I)/Platinum(0) Transition Metal Only Frustrated Lewis Pair. J Am Chem Soc 139:2944–2947. https://doi.org/10.1021/jacs.7b00491

  49. Bullock RM, Chambers GM (2017) Frustration Across the Periodic Table: Heterolytic Cleavage of Dihydrogen by Metal Complexes. Philos Trans R Soc Math Phys Eng Sci 375:20170002. https://doi.org/10.1098/rsta.2017.0002

  50. Habraken ERM, Jupp AR, Brands MB, Nieger M, Ehlers AW, Slootweg JC (2019) Parallels Between Metal-Ligand Cooperativity and Frustrated Lewis Pairs. Eur J Inorg Chem 2019:2436–2442. https://doi.org/10.1002/ejic.201900169

  51. Lu G, Zhang P, Sun D, Wang L, Zhou K, Wang Z-X, Guo G-C (2014) Gold Catalyzed Hydrogenations of Small Imines and Nitriles: Enhanced Reactivity of Au Surface Toward H2 via Collaboration With a Lewis Base. Chem Sci 5:1082–1090. https://doi.org/10.1039/C3SC52851K

  52. Rokob TA, Hamza A, Stirling A, Pápai I (2009) On the Mechanism of B(C6F5)3-Catalyzed Direct Hydrogenation of Imines: Inherent and Thermally Induced Frustration. J Am Chem Soc 131:2029–2036. https://doi.org/10.1021/ja809125r

  53. Arndt S, Rudolph M, Hashmi ASK (2017) Gold-Based Frustrated Lewis Acid/Base Pairs (FLPs). Gold Bull 50:267–282. https://doi.org/10.1007/s13404-017-0219-7

  54. Preti D, Resta C, Squarcialupi S, Fachinetti G (2011) Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst. Angew Chem Int Ed 50:12551–12554. https://doi.org/10.1002/anie.201105481

  55. Lv X, Lu G, Wang Z-Q, Xu Z-N, Guo G-C (2017) Computational Evidence for Lewis Base-Promoted CO2 Hydrogenation to Formic Acid on Gold Surfaces. ACS Catal 7:4519–4526. https://doi.org/10.1021/acscatal.7b00277

  56. Cano I, Chapman AM, Urakawa A, van Leeuwen PWNM (2014) Air-Stable Gold Nanoparticles Ligated by Secondary Phosphine Oxides for the Chemoselective Hydrogenation of Aldehydes: Crucial Role of the Ligand. J Am Chem Soc 136:2520–2528. https://doi.org/10.1021/ja411202h

  57. Almora-Barrios N, Cano I, van Leeuwen PWNM, López N (2017) Concerted Chemoselective Hydrogenation of Acrolein on Secondary Phosphine Oxide Decorated Gold Nanoparticles. ACS Catal 7:3949–3954. https://doi.org/10.1021/acscatal.7b00355

  58. Fiorio JL, López N, Rossi LM (2017) Gold–ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H2 heterolytic activation by frustrated Lewis pairs. ACS Catal 7:2973–2980. https://doi.org/10.1021/acscatal.6b03441

  59. Fiorio JL, Barbosa ECM, Kikuchi DK, Camargo PHC, Rudolph M, Hashmi ASK, Rossi LM (2020) Piperazine-Promoted Gold-Catalyzed Hydrogenation: the Influence of Cap** Ligands. Catal Sci Technol 10:1996–2003. https://doi.org/10.1039/C9CY02016K

  60. Spies P, Erker G, Kehr G, Bergander K, Fröhlich R, Grimme S, Stephan DW (2007) Rapid Intramolecular Heterolytic Dihydrogen Activation by a Four-Membered Heterocyclic Phosphane–Borane Adduct. Chem Commun 0:5072–5074. https://doi.org/10.1039/B710475H

  61. Bouchard N, Fontaine F-G (2019) Alkylammoniotrifluoroborate Functionalized Polystyrenes: Polymeric Pre-Catalysts for the Metal-Free Borylation of Heteroarenes. Dalton Trans 48:4846–4856. https://doi.org/10.1039/C9DT00484J

  62. Kim KT, Cornelissen JJLM, Nolte RJM, van Hest JCM (2009) Polymeric Monosaccharide Receptors Responsive at Neutral pH. J Am Chem Soc 131:13908–13909. https://doi.org/10.1021/ja905652w

  63. Légaré M-A, Courtemanche M-A, Rochette É, Fontaine F-G (2015) Metal-Free Catalytic C-H Bond Activation and Borylation of Heteroarenes. Science 349:513–516. https://doi.org/10.1126/science.aab3591

  64. Fasano V, Ingleson MJ (2018) Recent Advances in Water-Tolerance in Frustrated Lewis Pair Chemistry. Synthesis 50:1783–1795. https://doi.org/10.1055/s-0037-1609843

  65. Légaré M-A, Rochette É, Lavergne JL, Bouchard N, Fontaine F-G (2016) Bench-Stable Frustrated Lewis Pair Chemistry: Fluoroborate Salts as Precatalysts for the C-H Borylation of Heteroarenes. Chem Commun 52:5387–5390. https://doi.org/10.1039/C6CC01267A

  66. Jayaraman A, Misal Castro LC, Fontaine F-G (2018) Practical and Scalable Synthesis of Borylated Heterocycles Using Bench-Stable Precursors of Metal-Free Lewis Pair Catalysts. Org Process Res Dev 22:1489–1499. https://doi.org/10.1021/acs.oprd.8b00248

  67. Wang L, Kehr G, Daniliuc CG, Brinkkötter M, Wiegand T, Wübker A-L, Eckert H, Liu L, Brandenburg JG, Grimme S, Erker G (2018) Solid State Frustrated Lewis Pair Chemistry. Chem Sci 9:4859–4865. https://doi.org/10.1039/C8SC01089G

  68. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The Chemistry and Applications of Metal-Organic Frameworks. Science 341:1230444. https://doi.org/10.1126/science.1230444

  69. Ye J, Johnson JK (2015) Design of Lewis Pair-Functionalized Metal Organic Frameworks for CO2 Hydrogenation. ACS Catal 5:2921–2928. https://doi.org/10.1021/acscatal.5b00396

  70. Ye J, Johnson JK (2015) Screening Lewis Pair Moieties for Catalytic Hydrogenation of CO2 in Functionalized UiO-66. ACS Catal 5:6219–6229. https://doi.org/10.1021/acscatal.5b01191

  71. Ye J, Yeh BY, Reynolds RA, Johnson JK (2017) Screening the Activity of Lewis Pairs for Hydrogenation of CO2. Mol Simul 43:821–827. https://doi.org/10.1080/08927022.2017.1295457

  72. Ye J, Johnson JK (2016) Catalytic Hydrogenation of CO2 to Methanol in a Lewis Pair Functionalized MOF. Catal Sci Technol 6:8392–8405. https://doi.org/10.1039/C6CY01245K

  73. Ye J, Li L, Johnson JK (2018) The Effect of Topology in Lewis Pair Functionalized Metal Organic Frameworks on CO2 Adsorption and Hydrogenation. Catal Sci Technol 8:4609–4617. https://doi.org/10.1039/C8CY01018H

  74. Li L, Zhang S, Ruffley JP, Johnson JK (2019) Energy Efficient Formaldehyde Synthesis by Direct Hydrogenation of Carbon Monoxide in Functionalized Metal-Organic Frameworks. ACS Sustain Chem Eng 7:2508–2515. https://doi.org/10.1021/acssuschemeng.8b05413

  75. Niu Z, Bhagya Gunatilleke WDC, Sun Q, Lan PC, Perman J, Ma J-G, Cheng Y, Aguila B, Ma S (2018) Metal-Organic Framework Anchored with a Lewis Pair as a New Paradigm for Catalysis. Chem 4:2587–2599. https://doi.org/10.1016/j.chempr.2018.08.018

  76. Stephan DW (2018) Frustrated Lewis Pair Chemistry Meets Metal-Organic Frameworks. Chem 4:2483–2485. https://doi.org/10.1016/j.chempr.2018.09.008

  77. Eisenberger P, Bailey AM, Crudden CM (2012) Taking the F Out of FLP: Simple Lewis Acid-Base Pairs for Mild Reductions with Neutral Boranes via Borenium ion Catalysis. J Am Chem Soc 134:17384–17387. https://doi.org/10.1021/ja307374j

  78. Niu Z, Zhang W, Lan PC, Aguila B, Ma S (2019) Promoting Frustrated Lewis Pairs for Heterogeneous Chemoselective Hydrogenation via the Tailored Pore Environment Within Metal-Organic Frameworks. Angew Chem Int Ed 58:7420–7424. https://doi.org/10.1002/anie.201903763

  79. Shyshkanov S, Nguyen TN, Ebrahim FM, Stylianou KC, Dyson PJ (2019) In Situ Formation of Frustrated Lewis Pairs in a Water-Tolerant Metal-Organic Framework for the Transformation of CO2. Angew Chem Int Ed 58:5371–5375. https://doi.org/10.1002/anie.201901171

  80. Zhang Z, Sun Q, **a C, Sun W (2016) CO2 as a C1 Source: B(C6F5)3-Catalyzed Cyclization of o-Phenylene-diamines to Construct Benzimidazoles in the Presence of Hydrosilane. Org Lett 18:6316–6319. https://doi.org/10.1021/acs.orglett.6b03030

  81. Shyshkanov S, Nguyen TN, Chidambaram A, Stylianou KC, Dyson PJ (2019) Frustrated Lewis Pair-Mediated Fixation of CO2 Within a Metal–Organic Framework. Chem Commun 55:10964–10967. https://doi.org/10.1039/C9CC04374H

  82. Ashley AE, Thompson AL, O’Hare D (2009) Non-Metal-Mediated Homogeneous Hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48:9839–9843. https://doi.org/10.1002/anie.200905466

  83. Zakharova MV, Masoumifard N, Hu Y, Han J, Kleitz F, Fontaine F-G (2018) Designed Synthesis of Mesoporous Solid-Supported Lewis Acid-Base Pairs and Their CO2 Adsorption Behaviors. ACS Appl Mater Interfaces 10:13199–13210. https://doi.org/10.1021/acsami.8b00640

  84. Zakharova MV, Kleitz F, Fontaine F-G (2017) Lewis Acidity Quantification and Catalytic Activity of Ti, Zr and Al-Supported Mesoporous Silica. Dalton Trans 46:3864–3876. https://doi.org/10.1039/C7DT00035A

  85. Zhan Z, Manninger I, Paal Z, Barthomeuf D (1994) Reactions of n-Hexane over Pt-Zeolite Catalysts of Different Acidity. J Catal 147:333–341. https://doi.org/10.1006/jcat.1994.1144

  86. Thybaut JW, Narasimhan CSL, Marin GB, Denayer JFM, Baron GV, Jacobs PA, Martens JA (2004) Alkylcarbenium Ion Concentrations in Zeolite Pores During Octane Hydrocracking on Pt/H-USY Zeolite. Catal Lett 94:81–88. https://doi.org/10.1023/B:CATL.0000019335.48350.24

  87. Lee H, Choi YN, Lim D-W, Rahman MM, Kim Y-I, Cho IH, Kang HW, Seo J-H, Jeon C, Yoon KB (2015) Formation of Frustrated Lewis Pairs in Ptx-Loaded Zeolite NaY. Angew Chem Int Ed 54:13080–13084. https://doi.org/10.1002/anie.201506790

  88. Long D-L, Tsunashima R, Cronin L (2010) Polyoxometalates: Building Blocks for Functional Nanoscale Systems. Angew Chem Int Ed 49:1736–1758. https://doi.org/10.1002/anie.200902483

  89. Gumerova NI, Rompel A (2018) Synthesis, Structures and Applications of Electron-Rich Polyoxometalates. Nat Rev Chem 2:1–20. https://doi.org/10.1038/s41570-018-0112

  90. Chen W-P, Sang R-L, Wang Y, Xu L (2013) An Unprecedented [MoIV3O4]-Incorporated Polyoxometalate Concomitant with MoO2 Nucleophilic Addition. Chem Commun 49:5883–5885. https://doi.org/10.1039/C3CC41954A

  91. Xu X, Luo B, Wang L-L, Xu L (2018) An Unprecedented Nanocage-Like and Heterometallic [MoIV3O4]-Polyoxomolybdate Hybrid. Dalton Trans 47:3218–3222. https://doi.org/10.1039/C7DT04309K

  92. Luo B, Sang R, Lin L, Xu L (2019) MoIV3-Polyoxomolybdates with Frustrated Lewis Pairs for High-Performance Hydrogenation Catalysis. Catal Sci Technol 9:65–69. https://doi.org/10.1039/C8CY01771A

  93. Luo B, Xu L (2019) POM-FLPs: [MoIV3]n-polyoxometalate Bifunctional Catalysis by [MoIV3]n–Om Lewis Pairs Frustrated by Triangular MoIV–MoIV Bonds. Dalton Trans 48:6892–6898. https://doi.org/10.1039/C9DT00983C

  94. Yu F, Xu L (2019) Highly Efficient MoIV3···SbIII Cluster Frustrated Lewis Pair Hydrogenation. Dalton Trans 48:17445–17450. https://doi.org/10.1039/C9DT04138A

  95. Wischert R, Copéret C, Delbecq F, Sautet P (2011) Optimal Water Coverage on Alumina: a Key to Generate Lewis Acid-Base Pairs That are Reactive Towards the C-H Bond Activation of Methane. Angew Chem Int Ed 50:3202–3205. https://doi.org/10.1002/anie.201006794

  96. Wischert R, Laurent P, Copéret C, Delbecq F, Sautet P (2012) γ-Alumina: The Essential and Unexpected Role of Water for the Structure, Stability, and Reactivity of “Defect” Sites. J Am Chem Soc 134:14430–14449. https://doi.org/10.1021/ja3042383

  97. Hoch LB, Wood TE, O’Brien PG, Liao K, Reyes LM, Mims CA, Ozin GA (2014) The Rational Design of a Single-Component Photocatalyst for Gas-Phase CO2 Reduction Using Both UV and Visible Light. Adv Sci 1:1400013. https://doi.org/10.1002/advs.201400013

  98. Ghuman KK, Wood TE, Hoch LB, Mims CA, Ozin GA, Singh CV (2015) Illuminating CO2 Reduction on Frustrated Lewis Pair Surfaces: Investigating the Role of Surface Hydroxides and Oxygen Vacancies on Nanocrystalline In2O3−x(OH)y. Phys Chem Chem Phys 17:14623–14635. https://doi.org/10.1039/C5CP02613J

  99. Ghoussoub M, Yadav S, Ghuman KK, Ozin GA, Singh CV (2016) Metadynamics-Biased Ab Initio Molecular Dynamics Study of Heterogeneous CO2 Reduction via Surface Frustrated Lewis Pairs. ACS Catal 6:7109–7117. https://doi.org/10.1021/acscatal.6b01545

  100. Hoch LB, He L, Qiao Q, Liao K, Reyes LM, Zhu Y, Ozin GA (2016) Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO2 Reduction. Chem Mater 28:4160–4168. https://doi.org/10.1021/acs.chemmater.6b00301

  101. Ghuman KK, Hoch LB, Szymanski P, Loh JYY, Kherani NP, El-Sayed MA, Ozin GA, Singh CV (2016) Photoexcited Surface Frustrated Lewis Pairs for Heterogeneous Photocatalytic CO2 Reduction. J Am Chem Soc 138:1206–1214. https://doi.org/10.1021/jacs.5b10179

  102. Hoch LB, Szymanski P, Ghuman KK, He L, Liao K, Qiao Q, Reyes LM, Zhu Y, El-Sayed MA, Singh CV, Ozin GA (2016) Carrier Dynamics and the Role of Surface Defects: Designing a Photocatalyst for Gas-Phase CO2 Reduction. Proc Natl Acad Sci 113:E8011–E8020. https://doi.org/10.1073/pnas.1609374113

  103. He L, Wood TE, Wu B, Dong Y, Hoch LB, Reyes LM, Wang D, Kübel C, Qian C, Jia J, Liao K, O’Brien PG, Sandhel A, Loh JYY, Szymanski P, Kherani NP, Sum TC, Mims CA, Ozin GA (2016) Spatial Separation of Charge Carriers in In2O3−x(OH)y Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. ACS Nano 10:5578–5586. https://doi.org/10.1021/acsnano.6b02346

  104. Dong Y, Ghuman KK, Popescu R, Duchesne PN, Zhou W, Loh JYY, Jelle AA, Jia J, Wang D, Mu X, Kübel C, Wang L, He L, Ghoussoub M, Wang Q, Wood TE, Reyes LM, Zhang P, Kherani NP, Singh CV, Ozin GA (2018) Tailoring Surface Frustrated Lewis Pairs of In2O3−x(OH)y for Gas-Phase Heterogeneous Photocatalytic Reduction of CO2 by Isomorphous Substitution of In3+ with Bi3+. Adv Sci 5:1700732. https://doi.org/10.1002/advs.201700732

  105. Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas AA, Wood TE, Li H, Loh JYY, Dong Y, **a M, Li Y, Wang S, Jia J, Qiu C, Qian C, Kherani NP, He L, Zhang X, Ozin GA (2018) Photocatalytic Hydrogenation of Carbon Dioxide With High Selectivity to Methanol at Atmospheric Pressure. Joule 2:1369–1381. https://doi.org/10.1016/j.joule.2018.03.007

  106. Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas AA, Wood TE, Li H, Loh JYY, Dong Y, **a M, Li Y, Wang S, Jia J, Qiu C, Qian C, Kherani NP, He L, Zhang X, Ozin GA (2018) Photocatalytic Hydrogenation of Carbon Dioxide with High Selectivity to Methanol at Atmospheric Pressure. Joule 2:1382. https://doi.org/10.1016/j.joule.2018.04.013

  107. Yan T, Wang L, Liang Y, Makaremi M, Wood TE, Dai Y, Huang B, Jelle AA, Dong Y, Ozin GA (2019) Polymorph Selection Towards Photocatalytic Gaseous CO2 Hydrogenation. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-10524-2

  108. Wang L, Yan T, Song R, Sun W, Dong Y, Guo J, Zhang Z, Wang X, Ozin GA (2019) Room-Temperature Activation of H2 by a Surface Frustrated Lewis Pair. Angew Chem Int Ed 58:9501–9505. https://doi.org/10.1002/anie.201904568

  109. Zhang S, Huang Z-Q, Ma Y, Gao W, Li J, Cao F, Li L, Chang C-R, Qu Y (2017) Solid Frustrated-Lewis-Pair Catalysts Constructed by Regulations on Surface Defects of Porous Nanorods of CeO2. Nat Commun 8:15266. https://doi.org/10.1038/ncomms15266

  110. Huang Z-Q, Liu L-P, Qi S, Zhang S, Qu Y, Chang C-R (2018) Understanding All-Solid Frustrated-Lewis-Pair Sites on CeO2 from Theoretical Perspectives. ACS Catal 8:546–554. https://doi.org/10.1021/acscatal.7b02732

  111. Huang Z-Q, Zhang T, Chang C-R, Li J (2019) Dynamic Frustrated Lewis Pairs on Ceria for Direct Nonoxidative Coupling of Methane. ACS Catal 9:5523–5536. https://doi.org/10.1021/acscatal.9b00838

  112. Zhang S, **a Z, Zou Y, Cao F, Liu Y, Ma Y, Qu Y (2019) Interfacial Frustrated Lewis Pairs of CeO2 Activate CO2 for Selective Tandem Transformation of Olefins and CO2 into Cyclic Carbonates. J Am Chem Soc 141:11353–11357. https://doi.org/10.1021/jacs.9b03217

  113. Zhang S, Huang Z-Q, Chen X, Gan J, Duan X, Yang B, Chang C-R, Qu Y (2019) Hydrogen Activation Enabled by the Interfacial Frustrated Lewis Pairs on Cobalt Borate Nanosheets. J Catal 372:142–150. https://doi.org/10.1016/j.jcat.2019.02.033

  114. Wang J, Zhao X, Lei N, Li L, Zhang L, Xu S, Miao S, Pan X, Wang A, Zhang T (2016) Hydrogenolysis of Glycerol to 1,3-Propanediol Under Low Hydrogen Pressure over WOx-Supported Single/Pseudo-Single Atom Pt Catalyst. ChemSusChem 9:784–790. https://doi.org/10.1002/cssc.201501506

  115. Zhao X, Wang J, Yang M, Lei N, Li L, Hou B, Miao S, Pan X, Wang A, Zhang T (2017) Selective Hydrogenolysis of Glycerol to 1,3-Propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WOx. ChemSusChem 10:819–824. https://doi.org/10.1002/cssc.201601503

  116. Su DS, Perathoner S, Centi G (2013) Nanocarbons for the Development of Advanced Catalysts. Chem Rev 113:5782–5816. https://doi.org/10.1021/cr300367d

  117. Primo A, Neatu F, Florea M, Parvulescu V, Garcia H (2014) Graphenes in the Absence of Metals as Carbocatalysts for Selective Acetylene Hydrogenation and Alkene Hydrogenation. Nat Commun 5:5291. https://doi.org/10.1038/ncomms6291

  118. Trandafir M-M, Florea M, Neaţu F, Primo A, Parvulescu VI, García H (2016) Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem 9:1565–1569. https://doi.org/10.1002/cssc.201600197

  119. Patel M, Savaram K, Li Q, Buchspies J, Ma N, Szostak M, He H (2018) Carbon-Based, Metal-Free Catalysts for Chemical Catalysis. In: Carbon-Based Metal-Free Catalysts. John Wiley & Sons, Ltd, pp 597–657

    Google Scholar 

  120. Navalon S, Dhakshinamoorthy A, Alvaro M, Antonietti M, García H (2017) Active Sites on Graphene-Based Materials as Metal-Free Catalysts. Chem Soc Rev 46:4501–4529. https://doi.org/10.1039/C7CS00156H

  121. Sastre G, Forneli A, Almasan V, Parvulescu VI, Garcia H (2017) Isotopic H/D Exchange on Graphenes. A Combined Experimental and Theoretical Study. Appl Catal Gen 547:52–59. https://doi.org/10.1016/j.apcata.2017.08.018

  122. Wang B, Liu G, Deng X, Deng Z, Lin W, Li Z (2020) Replacement of Pd Nanoparticles: Hydrogenation Promoted by Frustrated Lewis Acid-Base Pairs in Carbon Quantum Dots. J Catal 383:304–310. https://doi.org/10.1016/j.jcat.2020.01.021

  123. Liao C, Liu B, Chi Q, Zhang Z (2018) Nitrogen-Doped Carbon Materials for the Metal-Free Reduction of Nitro Compounds. ACS Appl Mater Interfaces 10:44421–44429. https://doi.org/10.1021/acsami.8b15300

  124. Li B, Sun X, Su D (2015) Calibration of the Basic Strength of the Nitrogen Groups on the Nanostructured Carbon Materials. Phys Chem Chem Phys 17:6691–6694. https://doi.org/10.1039/C4CP05765A

  125. Abakumov AA, Bychko IB, Nikolenko AS, Strizhak PE (2018) Catalytic Activity of N-Doped Reduced Graphene Oxide in the Hydrogenation of Ethylene and Acetylene. Theor Exp Chem 54:218–224. https://doi.org/10.1007/s11237-018-9566-6

  126. Chen X, Shen Q, Li Z, Wan W, Chen J, Zhang J (2020) Metal-Free H2 Activation for Highly Selective Hydrogenation of Nitroaromatics Using Phosphorus-Doped Carbon Nanotubes. ACS Appl Mater Interfaces 12:654–666. https://doi.org/10.1021/acsami.9b17582

  127. Sun X, Li B, Liu T, Song J, Su DS (2016) Designing Graphene as a New Frustrated Lewis Pair Catalyst for Hydrogen Activation by Co-do**. Phys Chem Chem Phys 18:11120–11124. https://doi.org/10.1039/C5CP07969A

  128. Ding Y, Huang X, Yi X, Qiao Y, Sun X, Zheng A, Su DS (2018) A Heterogeneous Metal-Free Catalyst for Hydrogenation: Lewis Acid-Base Pairs Integrated Into a Carbon Lattice. Angew Chem Int Ed 57:13800–13804. https://doi.org/10.1002/anie.201803977

  129. Ren Y, Wang Y, Li X, Zhang Z, Chi Q (2018) Selective Hydrogenation of Quinolines into 1,2,3,4-Tetrahydroquinolines over a Nitrogen-Doped Carbon-Supported Pd Catalyst. New J Chem 42:16694–16702. https://doi.org/10.1039/C8NJ04014A

  130. Wang S, Zhou P, Jiang L, Zhang Z, Deng K, Zhang Y, Zhao Y, Li J, Bottle S, Zhu H (2018) Selective Deoxygenation of Carbonyl Groups at Room Temperature and Atmospheric Hydrogen Pressure over Nitrogen-Doped Carbon Supported Pd Catalyst. J Catal 368:207–216. https://doi.org/10.1016/j.jcat.2018.10.017

  131. Fiorio JL, Gonçalves RV, Teixeira-Neto E, Ortuño MA, López N, Rossi LM (2018) Accessing Frustrated Lewis Pair Chemistry Through Robust Gold@N-Doped Carbon for Selective Hydrogenation of Alkynes. ACS Catal 8:3516–3524. https://doi.org/10.1021/acscatal.8b00806

  132. Wang J, Ma F, Sun M (2017) Graphene, Hexagonal Boron Nitride, and Their Heterostructures: Properties and Applications. RSC Adv 7:16801–16822. https://doi.org/10.1039/C7RA00260B

  133. Nash DJ, Restrepo DT, Parra NS, Giesler KE, Penabade RA, Aminpour M, Le D, Li Z, Farha OK, Harper JK, Rahman TS, Blair RG (2016) Heterogeneous Metal-Free Hydrogenation over Defect-Laden Hexagonal Boron Nitride. ACS Omega 1:1343–1354. https://doi.org/10.1021/acsomega.6b00315

  134. Mattson B, Foster W, Greimann J, Hoette T, Le N, Mirich A, Wankum S, Cabri A, Reichenbacher C, Schwanke E (2013) Heterogeneous Catalysis: The Horiuti-Polanyi Mechanism and Alkene Hydrogenation. J Chem Educ 90:613–619. https://doi.org/10.1021/ed300437k

  135. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an Unexplored 2D Semiconductor With a High Hole Mobility. ACS Nano 8:4033–4041. https://doi.org/10.1021/nn501226z

  136. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black Phosphorus Field-Effect Transistors. Nat Nanotechnol 9:372–377. https://doi.org/10.1038/nnano.2014.35

  137. Koenig SP, Doganov RA, Schmidt H, Castro Neto AH, Özyilmaz B (2014) Electric Field Effect in Ultrathin Black Phosphorus. Appl Phys Lett 104:103106. https://doi.org/10.1063/1.4868132

  138. Zhao J, Liu X, Chen Z (2017) Frustrated Lewis Pair Catalysts in Two Dimensions: B/Al-Doped Phosphorenes as Promising Catalysts for Hydrogenation of Small Unsaturated Molecules. ACS Catal 7:766–771. https://doi.org/10.1021/acscatal.6b02727

  139. Pei J, Gai X, Yang J, Wang X, Yu Z, Choi D-Y, Luther-Davies B, Lu Y (2016) Producing Air-Stable Monolayers of Phosphorene and Their Defect Engineering. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms10450

  140. Fontaine F-G, Stephan DW (2017) On the Concept of Frustrated Lewis Pairs. Philos Trans R Soc Math Phys Eng Sci 375:20170004. https://doi.org/10.1098/rsta.2017.0004

  141. Ghuman KK, Hoch LB, Wood TE, Mims C, Singh CV, Ozin GA (2016) Surface Analogues of Molecular Frustrated Lewis Pairs in Heterogeneous CO2 Hydrogenation Catalysis. ACS Catal 6:5764–5770. https://doi.org/10.1021/acscatal.6b01015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Jupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jupp, A.R. (2021). Heterogeneous Catalysis by Frustrated Lewis Pairs. In: Chris Slootweg, J., Jupp, A.R. (eds) Frustrated Lewis Pairs. Molecular Catalysis, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-58888-5_7

Download citation

Publish with us

Policies and ethics

Navigation