Representative Graph Neural Network

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Non-local operation is widely explored to model the long-range dependencies. However, the redundant computation in this operation leads to a prohibitive complexity. In this paper, we present a Representative Graph (RepGraph) layer to dynamically sample a few representative features, which dramatically reduces redundancy. Instead of propagating the messages from all positions, our RepGraph layer computes the response of one node merely with a few representative nodes. The locations of representative nodes come from a learned spatial offset matrix. The RepGraph layer is flexible to integrate into many visual architectures and combine with other operations. With the application of semantic segmentation, without any bells and whistles, our RepGraph network can compete or perform favourably against the state-of-the-art methods on three challenging benchmarks: ADE20K, Cityscapes, and PASCAL-Context datasets. In the task of object detection, our RepGraph layer can also improve the performance on the COCO dataset compared to the non-local operation. Code is available at https://git.io/RepGraph.

Part of the work was done when C. Yu was visiting The University of Adelaide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 103.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  2. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. ar**v (2019)

    Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. ar**v (2016)

    Google Scholar 

  4. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. ar**v (2017)

    Google Scholar 

  5. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: A\(\hat{\,}\) 2-nets: double attention networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 352–361 (2018)

    Google Scholar 

  6. Chen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y.: Graph-based global reasoning networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 433–442 (2019)

    Google Scholar 

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  8. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 764–773 (2017)

    Google Scholar 

  9. Ding, H., Jiang, X., Shuai, B., Qun Liu, A., Wang, G.: Context contrasted feature and gated multi-scale aggregation for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2393–2402 (2018)

    Google Scholar 

  10. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge 2012 (VOC2012) results (2012). http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  11. Fu, J., Liu, J., Tian, H., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  12. He, J., Deng, Z., Qiao, Y.: Dynamic multi-scale filters for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2961–2969 (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  15. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. ar**v (2017)

    Google Scholar 

  16. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  17. Huang, L., Yuan, Y., Guo, J., Zhang, C., Chen, X., Wang, J.: Interlaced sparse self-attention for semantic segmentation. ar**v (2019)

    Google Scholar 

  18. Huang, Z., Wang, X., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation (2019)

    Google Scholar 

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 448–456 (2015)

    Google Scholar 

  20. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 2017–2025 (2015)

    Google Scholar 

  21. Ke, T.W., Hwang, J.J., Liu, Z., Yu, S.X.: Adaptive affinity fields for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 587–602 (2018)

    Google Scholar 

  22. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems (NeurIPS) (2011)

    Google Scholar 

  23. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the International Conference on Machine Learning (ICML) (2001)

    Google Scholar 

  24. Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H.: Expectation-maximization attention networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  25. Liang, X., Zhou, H., **ng, E.P.: Dynamic-structured semantic propagation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 752–761 (2018)

    Google Scholar 

  26. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks with identity map**s for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  27. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125 (2017)

    Google Scholar 

  28. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  29. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 4898–4906 (2016)

    Google Scholar 

  30. Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  31. Peng, C., et al.: MegDet: a large mini-batch object detector. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6181–6189 (2018)

    Google Scholar 

  32. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  33. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals and linear bottlenecks: mobile networks for classification. ar**v 1801 (2018)

    Google Scholar 

  34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  35. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks (2018)

    Google Scholar 

  36. Wang, P., et al.: Understanding convolution for semantic segmentation. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV) (2018)

    Google Scholar 

  37. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  38. **ao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 418–434 (2018)

    Google Scholar 

  39. **e, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1492–1500 (2017)

    Google Scholar 

  40. Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3684–3692 (2018)

    Google Scholar 

  41. Yu, C., Wang, J., Gao, C., Yu, G., Shen, C., Sang, N.: Context prior for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12416–12425 (2020)

    Google Scholar 

  42. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 325–341 (2018)

    Google Scholar 

  43. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a discriminative feature network for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  44. Yuan, Y., Wang, J.: OCNet: object context network for scene parsing. ar**v (2018)

    Google Scholar 

  45. Yue, K., Sun, M., Yuan, Y., Zhou, F., Ding, E., Xu, F.: Compact generalized non-local network. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 6510–6519 (2018)

    Google Scholar 

  46. Zhang, H., et al.: Context encoding for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7151–7160 (2018)

    Google Scholar 

  47. Zhang, H., Zhang, H., Wang, C., **e, J.: Co-occurrent features in semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 548–557 (2019)

    Google Scholar 

  48. Zhang, R., Tang, S., Zhang, Y., Li, J., Yan, S.: Scale-adaptive convolutions for scene parsing. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2031–2039 (2017)

    Google Scholar 

  49. Zhang, S., Yan, S., He, X.: LatentGNN: learning efficient non-local relations for visual recognition. In: Proceedings of the International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  50. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6848–6856 (2018)

    Google Scholar 

  51. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  52. Zhao, H., Zhang, Y., Liu, S., Shi, J., Loy, C.C., Lin, D., Jia, J.: PSANet: point-wise spatial attention network for scene parsing. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  53. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  54. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Semantic understanding of scenes through the ADE20K dataset. CoRR abs/1608.05442 (2016)

    Google Scholar 

  55. Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 593–602 (2019)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 61433007 and 61876210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Sang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1813 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, C., Liu, Y., Gao, C., Shen, C., Sang, N. (2020). Representative Graph Neural Network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation