Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12354))

Included in the following conference series:

Abstract

Supervised learning in large discriminative models is a mainstay for modern computer vision. Such an approach necessitates investing in large-scale human-annotated datasets for achieving state-of-the-art results. In turn, the efficacy of supervised learning may be limited by the size of the human annotated dataset. This limitation is particularly notable for image segmentation tasks, where the expense of human annotation is especially large, yet large amounts of unlabeled data may exist. In this work, we ask if we may leverage semi-supervised learning in unlabeled video sequences and extra images to improve the performance on urban scene segmentation, simultaneously tackling semantic, instance, and panoptic segmentation. The goal of this work is to avoid the construction of sophisticated, learned architectures specific to label propagation (e.g., patch matching and optical flow). Instead, we simply predict pseudo-labels for the unlabeled data and train subsequent models with both human-annotated and pseudo-labeled data. The procedure is iterated for several times. As a result, our Naive-Student model, trained with such simple yet effective iterative semi-supervised learning, attains state-of-the-art results at all three Cityscapes benchmarks, reaching the performance of 67.8% PQ, 42.6% AP, and 85.2% mIOU on the test set. We view this work as a notable step towards building a simple procedure to harness unlabeled video sequences and extra images to surpass state-of-the-art performance on core computer vision tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (2016)

    Google Scholar 

  2. Abu-El-Haija, S., et al.: YouTube-8M: a large-scale video classification benchmark. ar**v:1609.08675 (2016)

  3. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. ar**v:1908.02983 (2019)

  4. Badrinarayanan, V., Galasso, F., Cipolla, R.: Label propagation in video sequences. In: CVPR (2010)

    Google Scholar 

  5. Bell, S., Upchurch, P., Snavely, N., Bala, K.: OpenSurfaces: a richly annotated catalog of surface appearance. ACM Trans. Graph. 32, 1–17 (2013)

    Article  Google Scholar 

  6. Budvytis, I., Sauer, P., Roddick, T., Breen, K., Cipolla, R.: Large scale labelled video data augmentation for semantic segmentation in driving scenarios. In: ICCV Workshop (2017)

    Google Scholar 

  7. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: CVPR (2015)

    Google Scholar 

  8. Castrejon, L., Kundu, K., Urtasun, R., Fidler, S.: Annotating object instances with a polygon-RNN. In: CVPR (2017)

    Google Scholar 

  9. Chen, L.C., et al.: Searching for efficient multi-scale architectures for dense image prediction. In: NeurIPS (2018)

    Google Scholar 

  10. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)

    Google Scholar 

  11. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. In: IEEE TPAMI (2017)

    Google Scholar 

  12. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. ar**v:1706.05587 (2017)

  13. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  14. Cheng, B., et al.: Panoptic-DeepLab. In: ICCV COCO + Mapillary Joint Recognition Challenge Workshop (2019)

    Google Scholar 

  15. Cheng, B., et al.: Panoptic-DeepLab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: CVPR (2020)

    Google Scholar 

  16. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017)

    Google Scholar 

  17. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  18. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical data augmentation with no separate search. ar**v:1909.13719 (2019)

  19. Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV (2015)

    Google Scholar 

  20. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV (2015)

    Google Scholar 

  21. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  22. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall Professional Technical Reference (2002)

    Google Scholar 

  23. Gadde, R., Jampani, V., Gehler, P.V.: Semantic video CNNs through representation war**. In: ICCV (2017)

    Google Scholar 

  24. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)

    Article  Google Scholar 

  25. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: CVPR (2018)

    Google Scholar 

  26. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  27. Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV (2011)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  29. Hénaff, O.J., Razavi, A., Doersch, C., Eslami, S., Oord, A.v.d.: Data-efficient image recognition with contrastive predictive coding. ar**v:1905.09272 (2019)

  30. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. ar**v preprint ar**v:1503.02531 (2015)

  31. Hong, S., Noh, H., Han, B.: Decoupled deep neural network for semi-supervised semantic segmentation. In: NeurIPS (2015)

    Google Scholar 

  32. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  33. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  34. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: CVPR (2019)

    Google Scholar 

  35. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: CVPR (2017)

    Google Scholar 

  36. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  37. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: CVPR (2019)

    Google Scholar 

  38. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: CVPR (2019)

    Google Scholar 

  39. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In: CVPR (2019)

    Google Scholar 

  40. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  41. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. (2017)

    Google Scholar 

  42. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML Workshop (2013)

    Google Scholar 

  43. Li, J., Raventos, A., Bhargava, A., Tagawa, T., Gaidon, A.: Learning to fuse things and stuff. ar**v:1812.01192 (2018)

  44. Li, L.J., Fei-Fei, L.: Optimol: automatic online picture collection via incremental model learning. IJCV 88, 147–168 (2010). https://doi.org/10.1007/s11263-009-0265-6

    Article  Google Scholar 

  45. Li, Q., Arnab, A., Torr, P.H.S.: Weakly- and semi-supervised panoptic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 106–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_7

    Chapter  Google Scholar 

  46. Li, Q., Qi, X., Torr, P.H.: Unifying training and inference for panoptic segmentation. ar**v:2001.04982 (2020)

  47. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmentation. In: CVPR (2017)

    Google Scholar 

  48. Liang, J., Homayounfar, N., Ma, W.C., **ong, Y., Hu, R., Urtasun, R.: Polytransform: deep polygon transformer for instance segmentation. ar**v:1912.02801 (2019)

  49. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  50. Liu, C., et al.: Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation. In: CVPR (2019)

    Google Scholar 

  51. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR (2018)

    Google Scholar 

  52. Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: looking wider to see better. ar**v:1506.04579 (2015)

  53. Luc, P., Neverova, N., Couprie, C., Verbeek, J., LeCun, Y.: Predicting deeper into the future of semantic segmentation. In: ICCV (2017)

    Google Scholar 

  54. Mustikovela, S.K., Yang, M.Y., Rother, C.: Can ground truth label propagation from video help semantic segmentation? In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 804–820. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_66

    Chapter  Google Scholar 

  55. Neuhold, G., Ollmann, T., Bulò, S.R., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017)

    Google Scholar 

  56. Nilsson, D., Sminchisescu, C.: Semantic video segmentation by gated recurrent flow propagation. In: CVPR (2018)

    Google Scholar 

  57. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: ICCV (2015)

    Google Scholar 

  58. Papandreou, G., Zhu, T., Chen, L.-C., Gidaris, S., Tompson, J., Murphy, K.: PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_17

    Chapter  Google Scholar 

  59. Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: ICCV (2015)

    Google Scholar 

  60. Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates. In: NeurIPS (2015)

    Google Scholar 

  61. Porzi, L., Bulò, S.R., Colovic, A., Kontschieder, P.: Seamless scene segmentation. In: CVPR (2019)

    Google Scholar 

  62. Porzi, L., Hofinger, M., Ruiz, I., Serrat, J., Bulo, S.R., Kontschieder, P.: Learning multi-object tracking and segmentation from automatic annotations. In: CVPR (2020)

    Google Scholar 

  63. Qi, H., et al.: Deformable convolutional networks - COCO detection and segmentation challenge 2017 entry. In: ICCV COCO Challenge Workshop (2017)

    Google Scholar 

  64. Radosavovic, I., Dollár, P., Girshick, R., Gkioxari, G., He, K.: Data distillation: towards omni-supervised learning. In: CVPR (2018)

    Google Scholar 

  65. Real, E., Shlens, J., Mazzocchi, S., Pan, X., Vanhoucke, V.: YouTube-BoundingBoxes: a large high-precision human-annotated data set for object detection in video. In: CVPR (2017)

    Google Scholar 

  66. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  67. Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: EMNLP (2003)

    Google Scholar 

  68. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection models. WACV/MOTION (2005)

    Google Scholar 

  69. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  70. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. IJCV 77, 157–173 (2008). https://doi.org/10.1007/s11263-007-0090-8

    Article  Google Scholar 

  71. Scudder, H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theor. 11, 363–371 (1965)

    Article  MathSciNet  Google Scholar 

  72. Shi, W., Gong, Y., Ding, C., Ma, Z., Tao, X., Zheng, N.: Transductive semi-supervised deep learning using min-max features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 311–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_19

    Chapter  Google Scholar 

  73. Souly, N., Spampinato, C., Shah, M.: Semi supervised semantic segmentation using generative adversarial network. In: ICCV (2017)

    Google Scholar 

  74. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: ICCV (2017)

    Google Scholar 

  75. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. ar**v:1912.04838 (2019)

  76. Tang, Y., Wang, J., Gao, B., Dellandréa, E., Gaizauskas, R., Chen, L.: Large scale semi-supervised object detection using visual and semantic knowledge transfer. In: CVPR (2016)

    Google Scholar 

  77. Voigtlaender, P., et al.: Mots: multi-object tracking and segmentation. In: CVPR (2019)

    Google Scholar 

  78. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.C.: Axial-DeepLab: stand-alone axial-attention for panoptic segmentation. ar**v:2003.07853 (2020)

  79. Wang, P., et al.: Understanding convolution for semantic segmentation. ar**v:1702.08502 (2017)

  80. Wei, Y., et al.: STC: a simple to complex framework for weakly-supervised semantic segmentation. In: IEEE TPAMI (2016)

    Google Scholar 

  81. Wei, Y., **ao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S.: Revisiting dilated convolution: a simple approach for weakly-and semi-supervised semantic segmentation. In: CVPR (2018)

    Google Scholar 

  82. Wu, J., Yildirim, I., Lim, J.J., Freeman, B., Tenenbaum, J.: Galileo: perceiving physical object properties by integrating a physics engine with deep learning. In: NeurIPS (2015)

    Google Scholar 

  83. Wu, Z., Shen, C., Van Den Hengel, A.: Wider or deeper: revisiting the ResNet model for visual recognition. Pattern Recogn. 90, 119–133 (2019)

    Article  Google Scholar 

  84. **e, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves imagenet classification. ar**v:1911.04252 (2019)

  85. **ong, Y., Liao, R., Zhao, H., Hu, R., Bai, M., Yumer, E., Urtasun, R.: UPSNet: a unified panoptic segmentation network. In: CVPR (2019)

    Google Scholar 

  86. Yalniz, I.Z., J’egou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. ar**v:1905.00546 (2019)

  87. Yang, T.J., et al.: DeeperLab: single-shot image parser. ar**v:1902.05093 (2019)

  88. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: ACL (1995)

    Google Scholar 

  89. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. ar**v:1909.11065 (2019)

  90. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  91. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: self-supervised semi-supervised learning. In: ICCV (2019)

    Google Scholar 

  92. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  93. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: ICCV (2017)

    Google Scholar 

  94. Zhu, X., **ong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: CVPR (2017)

    Google Scholar 

  95. Zhu, Y., et al.: Improving semantic segmentation via video propagation and label relaxation. In: CVPR (2019)

    Google Scholar 

  96. Zhu, Y., et al.: Improving semantic segmentation via self-training. ar**v:2004.14960 (2020)

Download references

Acknowledgments

We would like to thank the support from Google Mobile Vision and Brain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Chieh Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 111 KB)

Supplementary material 2 (mpg 11040 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, LC. et al. (2020). Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation