On Eigenvalue Distribution of Varying Hankel and Toeplitz Matrices with Entries of Power Growth or Decay

  • Conference paper
  • First Online:
Approximation Theory XVI (AT 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 336))

Included in the following conference series:

  • 410 Accesses

Abstract

We study the distribution of eigenvalues of varying Toeplitz and Hankel matrices such as \(\left [ a_{n+k-j}\right ] _{j,k}\) and \(\left [ a_{n+k+j} \right ] _{j,k}\) where a n behaves roughly like n β for some non- 0 complex number β, and n →. This complements earlier work on these matrices when the coefficients \(\left \{ a_{n}\right \} \) arise from entire functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basor, E., Morrison, K.: The Fisher-Hartwig conjecture and Toeplitz eigenvalues. Linear Algebra Appl. 202, 129–142 (1994)

    Article  MathSciNet  Google Scholar 

  2. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices, Springer, New York (1999)

    Book  Google Scholar 

  3. Bryc, W., Dembo, A., Jiang, Spectral measure of large random Hankel, Markov and Topelitz matrices. Ann. Probab. 34, 1–38 (2006)

    Article  Google Scholar 

  4. Edrei, A.: Sur les determinants récurrants et les singularites d’une fonction donnée par son developpement de Taylor. Compos. Math. 7, 20–88 (1939)

    MATH  Google Scholar 

  5. Erhardt, T., Shao, B.: Asymptotic behavior of variable-coefficient Toeplitz determinants. J. Fourier Anal. Appl. 7, 71–92 (2001)

    Article  MathSciNet  Google Scholar 

  6. Fasino, D., Tilli, P.: Spectral clustering of block multilevel Hankel matrices. Linear Algebra Appl. 306, 155–163 (2000)

    Article  MathSciNet  Google Scholar 

  7. Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, vol. 1. Springer, Berlin (2017)

    Book  Google Scholar 

  8. Golinskii, L., Serra-Capizzano, S.: The asymptotic properties of the spectrum of nonsymetrically perturbed Jacobi matrices. J. Approx. Theory 144, 84–102 (2007)

    Article  MathSciNet  Google Scholar 

  9. Grenander, U., Szegő, G.: Toeplitz Forms. Chelsea, New York (1958)

    Google Scholar 

  10. Hammond, C., Miller, S.J.: Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theor. Probab. 18, 537–566 (2005)

    Article  MathSciNet  Google Scholar 

  11. Jose Caro, F., Nagar, D.: Evaluation of matrix Liouville-Dirichlet integrals using Laplace transform. Integral Transforms Spec. Funct. 17, 245–255 (2006)

    Article  MathSciNet  Google Scholar 

  12. Krasovsky, I.: Aspects of Toeplitz determinants. In: Lenz, D., Sobieczky, F., Woss, W. (eds.) Boundaries and Spectra of Random Walks. Progress in Probability. Birkhauser, Basel (2011)

    Google Scholar 

  13. Liu, D.-Z., Sun, X., Wang, Z.-D.: Fluctuation of eigenvalues for random Toeplitz and related matrices. Electron. J. Probability 17, paper no. 95, 22 pp. (2012)

    Google Scholar 

  14. Lubinsky, D.S.: Uniform convergence of rows of the Padé table for functions with smooth Maclaurin series coefficients. Constr. Approx. 3, 307–330 (1987)

    Article  MathSciNet  Google Scholar 

  15. Lubinsky, D.S.: Padé tables of entire functions of very slow and smooth growth II. Constr. Approx. 4, 321–339 (1988)

    Article  MathSciNet  Google Scholar 

  16. Lubinsky, D.S.: Universality of distribution of eigenvalues of Toeplitz matrices with smooth entries. Manuscript

    Google Scholar 

  17. Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Dover, New York (1965)

    MATH  Google Scholar 

  18. Mascarenhas, H., Silbermann, B.: Sequences of variable-coefficient Toeplitz matrices and their singular values . J. Funct. Anal. 270, 1479–1500 (2016)

    Article  MathSciNet  Google Scholar 

  19. Mejlbo, L., Schmidt, P.: On the eigenvalues of generalized Topelitz matrices. Math. Scand. 10, 5–16 (1962)

    Article  MathSciNet  Google Scholar 

  20. Polya, G.: Über gewisse notwendige Determinantenkriterein fur die Forsetzbarkeit einer Potenzreihe. Math. Ann. 99, 687–706 (1928)

    Article  MathSciNet  Google Scholar 

  21. Sen, A., Virag, B.: Absolute continuity of the limiting eigenvalue distribution of the random Toeplitz matrix. Elect. Commun. Probab. 16, 606–711 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Sen, A., Virag, B.: The top eigenvalue of the random Toeplitz matrix and the sine kernel., Ann. Probab. 41, 4050–4079 (2013)

    Google Scholar 

  23. Serra-Capizzano, S., Bertaccini, D., Golub, G.: How to deduce a proper eigenvalue cluster from a proper singular value cluster in the nonnormal case. SIAM J. Matrix Anal. Appl. 27, 82–86 (2005)

    Article  MathSciNet  Google Scholar 

  24. Shohat, J., Tamarkin, J.: The problem of moments. American Mathematical Society, Rhode Island (1943)

    Book  Google Scholar 

  25. Sivazlian, B.D.: On a multivariate extension of the beta and gamma distributions. SIAM J. Appl. Math. 41, 205–209 (1981)

    Article  MathSciNet  Google Scholar 

  26. Tilli, P.: Some results on complex Toeplitz eigenvalues. J. Math. Anal. Appl. 239, 390–401 (1999)

    Article  MathSciNet  Google Scholar 

  27. Tyrtyshnikov, E.: How bad are Hankel matrices?. Numer. Math. 67, 261–269 (1994)

    Article  MathSciNet  Google Scholar 

  28. H. Widom, Hankel matrices. Trans. Amer. Math. Soc. 121, 1–35 (1966)

    Article  MathSciNet  Google Scholar 

  29. Zabroda, O., Simonenko, I.: Asymptotic invertibility and the collective asymptotic spectral behavior of generalized one-dimensional discrete convolutions. Funct. Anal. Appl. 38, 65–66 (2004)

    Article  MathSciNet  Google Scholar 

  30. Zamarashkin, N., Tyrtyshnikov, E.: Distribution of eigenvalues and singular values of Toeplitz matrices under weakened conditions on the generating function. Math. Sbornik 188, 1191–1201 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

Research supported by NSF grant DMS1800251 and Georgia Tech Mathematics REU Program NSF Grant DMS181843.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gidon Kowalsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kowalsky, G., Lubinsky, D.S. (2021). On Eigenvalue Distribution of Varying Hankel and Toeplitz Matrices with Entries of Power Growth or Decay. In: Fasshauer, G.E., Neamtu, M., Schumaker, L.L. (eds) Approximation Theory XVI. AT 2019. Springer Proceedings in Mathematics & Statistics, vol 336. Springer, Cham. https://doi.org/10.1007/978-3-030-57464-2_8

Download citation

Publish with us

Policies and ethics

Navigation