Immune Dysregulation Leading to Autoimmunity

  • Chapter
  • First Online:
Primary and Secondary Immunodeficiency

Abstract

The immune system is a delicate equilibrium of checks and balances. Defects in different aspects of the immune system can disrupt this balance and cause immune dysregulation and autoimmunity. These flaws in immunity can be caused by defects in central tolerance, peripheral tolerance, apoptosis, and natural killer cells. There are an increasing number of monogenic immunodeficiency disorders that lead to immune dysregulation, now called primary immune regulatory disorders (PIRD). This chapter will discuss the normal underlying pathophysiology of the immune system and how defects in immunity can lead to immune dysregulation. Two cases of patients with PIRD will be presented. These cases demonstrate that patients presenting with early onset, refractory, or unusual presentations of autoimmune disease should be evaluated for primary immunodeficiencies and PIRD. The differential diagnosis of patients with signs of immune dysregulation in addition to workup and potential treatments will be described. Immune dysregulation is a growing field of immunology and this chapter will highlight the latest knowledge in this expanding subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018;38(1):129–43. https://doi.org/10.1007/s10875-017-0465-8.

    Article  PubMed  Google Scholar 

  2. Nemazee D. Mechanisms of central tolerance for B cells. Nat Rev Immunol. 2017;17(5):281–94. https://doi.org/10.1038/nri.2017.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fruton JS. The collected papers of Paul Ehrlich. Yale J Biol Med. 1957;29(6):1.

    Google Scholar 

  4. Grimbacher B, Warnatz K, Yong PFK, Korganow AS, Peter HH. The crossroads of autoimmunity and immunodeficiency: lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol. 2016;137(1):3–17. https://doi.org/10.1016/j.jaci.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  5. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67. https://doi.org/10.1182/blood-2017-06-741033.

    Article  CAS  PubMed  Google Scholar 

  6. Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity. 2002;16(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  7. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170–81. https://doi.org/10.1038/nri2711.

    Article  CAS  PubMed  Google Scholar 

  8. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dowdell KC, Niemela JE, Price S, Davis J, Hornung RL, Oliveira JB, et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood. 2010;115(25):5164–9. https://doi.org/10.1182/blood-2010-01-263145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chervonsky AV. Apoptotic and effector pathways in autoimmunity. Curr Opin Immunol. 1999;11(6):684–8. https://doi.org/10.1016/s0952-7915(99)00037-0.

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava S, Koch LK, Campbell DJ. IFNalphaR signaling in effector but not regulatory T cells is required for immune dysregulation during type I IFN-dependent inflammatory disease. J Immunol. 2014;193(6):2733–42. https://doi.org/10.4049/jimmunol.1401039.

    Article  CAS  PubMed  Google Scholar 

  12. Zharkova O, Celhar T, Cravens PD, Satterthwaite AB, Fairhurst AM, Davis LS. Pathways leading to an immunological disease: systemic lupus erythematosus. Rheumatology (Oxford). 2017;56(suppl_1):i55–66. https://doi.org/10.1093/rheumatology/kew427.

    Article  CAS  Google Scholar 

  13. Son M, Diamond B, Santiago-Schwarz F. Fundamental role of C1q in autoimmunity and inflammation. Immunol Res. 2015;63(1–3):101–6. https://doi.org/10.1007/s12026-015-8705-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eleftheriou D, Brogan PA. Genetic interferonopathies: an overview. Best Pract Res Clin Rheumatol. 2017;31(4):441–59. https://doi.org/10.1016/j.berh.2017.12.002.

    Article  PubMed  Google Scholar 

  15. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63. https://doi.org/10.1074/jbc.R700016200.

    Article  CAS  PubMed  Google Scholar 

  16. Teachey DT. New advances in the diagnosis and treatment of autoimmune lymphoproliferative syndrome. Curr Opin Pediatr. 2012;24(1):1–8. https://doi.org/10.1097/MOP.0b013e32834ea739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rieux-Laucat F, Le Deist F, Fischer A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ. 2003;10(1):124–33. https://doi.org/10.1038/sj.cdd.4401190.

    Article  CAS  PubMed  Google Scholar 

  18. Price S, Shaw PA, Seitz A, Joshi G, Davis J, Niemela JE, et al. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood. 2014;123(13):1989–99. https://doi.org/10.1182/blood-2013-10-535393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH international workshop. Blood. 2010;116(14):e35–40. https://doi.org/10.1182/blood-2010-04-280347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cagdas D, Halacli SO, Tan C, Lo B, Cetinkaya PG, Esenboga S et al. A Spectrum of clinical findings from ALPS to CVID: several novel LRBA defects. J Clin Immunol. 2019. https://doi.org/10.1007/s10875-019-00677-6.

  21. Russell TB, Kurre P. Double-negative T cells are non-ALPS-specific markers of immune dysregulation found in patients with aplastic anemia. Blood. 2010;116(23):5072–3. https://doi.org/10.1182/blood-2010-09-306910.

    Article  CAS  PubMed  Google Scholar 

  22. Rao VK, Oliveira JB. How I treat autoimmune lymphoproliferative syndrome. Blood. 2011;118(22):5741–51. https://doi.org/10.1182/blood-2011-07-325217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teachey DT, Seif AE, Grupp SA. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br J Haematol. 2010;148(2):205–16. https://doi.org/10.1111/j.1365-2141.2009.07991.x.

    Article  CAS  PubMed  Google Scholar 

  24. Rao VK, Oliveira JB. How I treat autoimmune lymphoproliferative syndrome. Blood. 2011;118(22):11.

    Article  Google Scholar 

  25. Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410–6. https://doi.org/10.1038/nm.3746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lo B, Fritz JM, Su HC, Uzel G, Jordan MB, Lenardo MJ. CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood. 2016;128(8):1037–42. https://doi.org/10.1182/blood-2016-04-712612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gamez-Diaz L, August D, Stepensky P, Revel-Vilk S, Seidel MG, Noriko M, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137(1):223–30. https://doi.org/10.1016/j.jaci.2015.09.025.

    Article  CAS  PubMed  Google Scholar 

  28. Maffucci P, Filion CA, Boisson B, Itan Y, Shang L, Casanova JL, et al. Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front Immunol. 2016;7:220. https://doi.org/10.3389/fimmu.2016.00220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol Pract. 2019. https://doi.org/10.1016/j.jaip.2019.06.011.

  30. Uzel G, Karanovic D, Su H, Rump A, Agharahimi A, Holland SM, et al. Management of cytopenias in CTLA4 haploinsufficiency using abatacept and sirolimus. Blood. 2018;132(Suppl 1):1.

    Google Scholar 

  31. Slatter MA, Engelhardt KR, Burroughs LM, Arkwright PD, Nademi Z, Skoda-Smith S, et al. Hematopoietic stem cell transplantation for CTLA4 deficiency. J Allergy Clin Immunol. 2016;138(2):615–9 e1. https://doi.org/10.1016/j.jaci.2016.01.045.

    Article  PubMed  Google Scholar 

  32. Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 2014;46(8):812–4. https://doi.org/10.1038/ng.3040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pedersen A, Niemela JE, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 2015;125(4):591–9. https://doi.org/10.1182/blood-2014-09-602763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fabre A, Marchal S, Barlogis V, Mari B, Barbry P, Rohrlich PS, et al. Clinical aspects of STAT3 gain-of-function germline mutations: a systematic review. J Allergy Clin Immunol Pract. 2019;7(6):1958–69 e9. https://doi.org/10.1016/j.jaip.2019.02.018.

    Article  PubMed  Google Scholar 

  35. Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016;31:1–15. https://doi.org/10.1016/j.cytogfr.2016.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Forbes LR, Vogel TP, Cooper MA, Castro-Wagner J, Schussler E, Weinacht KG, et al. Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J Allergy Clin Immunol. 2018;142(5):1665–9. https://doi.org/10.1016/j.jaci.2018.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013;342(6160):866–71. https://doi.org/10.1126/science.1243292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597–606 e4. https://doi.org/10.1016/j.jaci.2016.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rao VK, Webster S, Dalm V, Sediva A, van Hagen PM, Holland S, et al. Effective "activated PI3Kdelta syndrome"-targeted therapy with the PI3Kdelta inhibitor leniolisib. Blood. 2017;130(21):2307–16. https://doi.org/10.1182/blood-2017-08-801191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nademi Z, Slatter MA, Dvorak CC, Neven B, Fischer A, Suarez F, et al. Hematopoietic stem cell transplant in patients with activated PI3K delta syndrome. J Allergy Clin Immunol. 2017;139(3):1046–9. https://doi.org/10.1016/j.jaci.2016.09.040.

    Article  PubMed  Google Scholar 

  41. Agarwal S, Cunningham-Rundles C. Autoimmunity in common variable immunodeficiency. Ann Allergy Asthma Immunol. 2019. https://doi.org/10.1016/j.anai.2019.07.014.

  42. Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, Trujillo-Vargas CM, Phadwal K, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001. https://doi.org/10.1016/j.ajhg.2012.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gamez-Diaz L, Sigmund EC, Reiser V, Vach W, Jung S, Grimbacher B. Rapid flow cytometry-based test for the diagnosis of lipopolysaccharide responsive beige-like anchor (LRBA) deficiency. Front Immunol. 2018;9:720. https://doi.org/10.3389/fimmu.2018.00720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40. https://doi.org/10.1126/science.aaa1663.

    Article  CAS  PubMed  Google Scholar 

  45. Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015;136(5):1186–205. e1–78. https://doi.org/10.1016/j.jaci.2015.04.049.

    Article  PubMed  Google Scholar 

  46. Villa A, Marrella V, Rucci F, Notarangelo LD. Genetically determined lymphopenia and autoimmune manifestations. Curr Opin Immunol. 2008;20(3):318–24. https://doi.org/10.1016/j.coi.2008.02.001.

    Article  CAS  PubMed  Google Scholar 

  47. Villa A, Notarangelo LD, Roifman CM. Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol. 2008;122(6):1082–6. https://doi.org/10.1016/j.jaci.2008.09.037.

    Article  CAS  PubMed  Google Scholar 

  48. Walter JE, Rosen LB, Csomos K, Rosenberg JM, Mathew D, Keszei M, et al. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J Clin Invest. 2015;125(11):4135–48. https://doi.org/10.1172/JCI80477.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vignoli M, Ciullini Mannurita S, Fioravanti A, Tumino M, Grassi A, Guariso G, et al. CD25 deficiency: a new conformational mutation prevents the receptor expression on cell surface. Clin Immunol. 2019;201:15–9. https://doi.org/10.1016/j.clim.2019.02.003.

    Article  CAS  PubMed  Google Scholar 

  50. Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119(2):482–7. https://doi.org/10.1016/j.jaci.2006.10.007.

    Article  CAS  PubMed  Google Scholar 

  51. Bezrodnik L, Di Giovanni D, Caldirola MS, Azcoiti ME, Torgerson T, Gaillard MI. Long-term follow-up of STAT5B deficiency in three argentinian patients: clinical and immunological features. J Clin Immunol. 2015;35(3):264–72. https://doi.org/10.1007/s10875-015-0145-5.

    Article  CAS  PubMed  Google Scholar 

  52. Hwa V. STAT5B deficiency: impacts on human growth and immunity. Growth Hormon IGF Res. 2016;28:16–20. https://doi.org/10.1016/j.ghir.2015.12.006.

    Article  CAS  Google Scholar 

  53. Snow JW, Abraham N, Ma MC, Goldsmith MA. Bone marrow transplant completely rescues hematolymphoid defects in STAT5A/5B-deficient mice. Exp Hematol. 2003;31(12):1247–52.

    Article  CAS  PubMed  Google Scholar 

  54. Ma CA, ** L, Cauff B, DeZure A, Freeman AF, Hambleton S, et al. Somatic STAT5b gain-of-function mutations in early onset nonclonal eosinophilia, urticaria, dermatitis, and diarrhea. Blood. 2017;129(5):650–3. https://doi.org/10.1182/blood-2016-09-737817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu L, Shi T, Zhong C, Wang Y, Chang M, Liu X. IL-10 and IL-10 receptor mutations in very early onset inflammatory bowel disease. Gastroenterology Res. 2017;10(2):65–9. https://doi.org/10.14740/gr740w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O, Boztug K, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143(2):347–55. https://doi.org/10.1053/j.gastro.2012.04.045.

    Article  CAS  PubMed  Google Scholar 

  57. Kole A, Maloy KJ. Control of intestinal inflammation by interleukin-10. Curr Top Microbiol Immunol. 2014;380:19–38. https://doi.org/10.1007/978-3-662-43492-5_2.

    Article  CAS  PubMed  Google Scholar 

  58. Engelhardt KR, Shah N, Faizura-Yeop I, Kocacik Uygun DF, Frede N, Muise AM, et al. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;131(3):825–30. https://doi.org/10.1016/j.jaci.2012.09.025.

    Article  CAS  PubMed  Google Scholar 

  59. Kisand K, Peterson P. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Clin Immunol. 2015;35(5):463–78. https://doi.org/10.1007/s10875-015-0176-y.

    Article  CAS  PubMed  Google Scholar 

  60. Shah M, Holland E, Chan CC. Resolution of autoimmune polyglandular syndrome-associated keratopathy with keratolimbal stem cell transplantation: case report and historical literature review. Cornea. 2007;26(5):632–5. https://doi.org/10.1097/ICO.0b013e3180415d1a.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48. https://doi.org/10.1084/jem.20110958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hambleton S. When the STATs are against you. Blood. 2016;127(25):3109–10. https://doi.org/10.1182/blood-2016-05-715029.

    Article  PubMed  Google Scholar 

  63. Toubiana J, Okada S, Hiller J, Oleastro M, Lagos Gomez M, Aldave Becerra JC, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154–64. https://doi.org/10.1182/blood-2015-11-679902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M, Dorsey MJ, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol. 2013;131(6):1611–23. https://doi.org/10.1016/j.jaci.2012.11.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vargas-Hernandez A, Mace EM, Zimmerman O, Zerbe CS, Freeman AF, Rosenzweig S, et al. Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol. 2018;141(6):2142–55 e5. https://doi.org/10.1016/j.jaci.2017.08.040.

    Article  CAS  PubMed  Google Scholar 

  66. Leiding JW, Okada S, Hagin D, Abinun M, Shcherbina A, Balashov DN, et al. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J Allergy Clin Immunol. 2018;141(2):704–17 e5. https://doi.org/10.1016/j.jaci.2017.03.049.

    Article  CAS  PubMed  Google Scholar 

  67. Kiykim A, Charbonnier LM, Akcay A, Karakoc-Aydiner E, Ozen A, Ozturk G, et al. Hematopoietic stem cell transplantation in patients with heterozygous STAT1 gain-of-function mutation. J Clin Immunol. 2019;39(1):37–44. https://doi.org/10.1007/s10875-018-0575-y.

    Article  CAS  PubMed  Google Scholar 

  68. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1. https://doi.org/10.1038/83713.

    Article  CAS  PubMed  Google Scholar 

  69. Barzaghi F, Amaya Hernandez LC, Neven B, Ricci S, Kucuk ZY, Bleesing JJ, et al. Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: an international multicenter retrospective study. J Allergy Clin Immunol. 2018;141(3):1036–49 e5. https://doi.org/10.1016/j.jaci.2017.10.041.

    Article  PubMed  Google Scholar 

  70. Seidel MG, Boztug K, Haas OA. Immune dysregulation syndromes (IPEX, CD27 deficiency, and others): always doomed from the start? J Clin Immunol. 2016;36(1):6–7. https://doi.org/10.1007/s10875-015-0218-5.

    Article  PubMed  Google Scholar 

  71. Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4(4):337–42. https://doi.org/10.1038/ni909.

    Article  CAS  PubMed  Google Scholar 

  72. Hwang JL, Park SY, Ye H, Sanyoura M, Pastore AN, Carmody D, et al. FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Diabetes. 2018;19(3):388–92. https://doi.org/10.1111/pedi.12612.

    Article  CAS  PubMed  Google Scholar 

  73. Gambineri E, Ciullini Mannurita S, Hagin D, Vignoli M, Anover-Sombke S, DeBoer S, et al. Clinical, immunological, and molecular heterogeneity of 173 patients with the phenotype of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Front Immunol. 2018;9:2411. https://doi.org/10.3389/fimmu.2018.02411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Torgerson TR, Linane A, Moes N, Anover S, Mateo V, Rieux-Laucat F, et al. Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology. 2007;132(5):1705–17. https://doi.org/10.1053/j.gastro.2007.02.044.

    Article  CAS  PubMed  Google Scholar 

  75. Gambineri E, Perroni L, Passerini L, Bianchi L, Doglioni C, Meschi F, et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J Allergy Clin Immunol. 2008;122(6):1105–12 e1. https://doi.org/10.1016/j.jaci.2008.09.027.

    Article  CAS  PubMed  Google Scholar 

  76. McGinness JL, Bivens MM, Greer KE, Patterson JW, Saulsbury FT. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) associated with pemphigoid nodularis: a case report and review of the literature. J Am Acad Dermatol. 2006;55(1):143–8. https://doi.org/10.1016/j.jaad.2005.08.047.

    Article  PubMed  Google Scholar 

  77. Bis S, Maguiness SM, Gellis SE, Schneider LC, Lee PY, Notarangelo LD, et al. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome associated with neonatal epidermolysis bullosa acquisita. Pediatr Dermatol. 2015;32(3):e74–7. https://doi.org/10.1111/pde.12550.

    Article  PubMed  Google Scholar 

  78. Bacchetta R, Barzaghi F, Roncarolo MG. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci. 2018;1417(1):5–22. https://doi.org/10.1111/nyas.13011.

    Article  CAS  PubMed  Google Scholar 

  79. Shamriz O, Patel K, Marsh RA, Bleesing J, Joshi AY, Lucas L, et al. Hypogammaglobulinemia with decreased class-switched B-cells and dysregulated T-follicular-helper cells in IPEX syndrome. Clin Immunol. 2018;197:219–23. https://doi.org/10.1016/j.clim.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  80. Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;3:211. https://doi.org/10.3389/fimmu.2012.00211.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kobayashi I, Kubota M, Yamada M, Tanaka H, Itoh S, Sasahara Y, et al. Autoantibodies to villin occur frequently in IPEX, a severe immune dysregulation, syndrome caused by mutation of FOXP3. Clin Immunol. 2011;141(1):83–9. https://doi.org/10.1016/j.clim.2011.05.010.

    Article  CAS  PubMed  Google Scholar 

  82. Moes N, Rieux-Laucat F, Begue B, Verdier J, Neven B, Patey N, et al. Reduced expression of FOXP3 and regulatory T-cell function in severe forms of early-onset autoimmune enteropathy. Gastroenterology. 2010;139(3):770–8. https://doi.org/10.1053/j.gastro.2010.06.006.

    Article  CAS  PubMed  Google Scholar 

  83. Huter EN, Natarajan K, Torgerson TR, Glass DD, Shevach EM. Autoantibodies in scurfy mice and IPEX patients recognize keratin 14. J Invest Dermatol. 2010;130(5):1391–9. https://doi.org/10.1038/jid.2010.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsuda M, Torgerson TR, Selmi C, Gambineri E, Carneiro-Sampaio M, Mannurita SC, et al. The spectrum of autoantibodies in IPEX syndrome is broad and includes anti-mitochondrial autoantibodies. J Autoimmun. 2010;35(3):265–8. https://doi.org/10.1016/j.jaut.2010.06.017.

    Article  CAS  PubMed  Google Scholar 

  85. Torgerson TR, Ochs HD. Regulatory T cells in primary immunodeficiency diseases. Curr Opin Allergy Clin Immunol. 2007;7(6):515–21. https://doi.org/10.1097/ACI.0b013e3282f1a27a.

    Article  PubMed  Google Scholar 

  86. Masiuk KE, Laborada J, Roncarolo MG, Hollis RP, Kohn DB. Lentiviral gene therapy in HSCs restores lineage-specific Foxp3 expression and suppresses autoimmunity in a mouse model of IPEX syndrome. Cell Stem Cell. 2019;24(2):309–17 e7. https://doi.org/10.1016/j.stem.2018.12.003.

    Article  CAS  PubMed  Google Scholar 

  87. Rao A, Kamani N, Filipovich A, Lee SM, Davies SM, Dalal J, et al. Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood. 2007;109(1):383–5. https://doi.org/10.1182/blood-2006-05-025072.

    Article  CAS  PubMed  Google Scholar 

  88. Zhan H, Sinclair J, Adams S, Cale CM, Murch S, Perroni L, et al. Immune reconstitution and recovery of FOXP3 (forkhead box P3)-expressing T cells after transplantation for IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome. Pediatrics. 2008;121(4):e998–1002. https://doi.org/10.1542/peds.2007-1863.

    Article  PubMed  Google Scholar 

  89. Yamauchi T, Takasawa K, Kamiya T, Kirino S, Gau M, Inoue K et al. Hematopoietic stem cell transplantation recovers insulin deficiency in type 1 diabetes mellitus associated with IPEX syndrome. Pediatr Diabetes. 2019. https://doi.org/10.1111/pedi.12895.

  90. Neven B, Magerus-Chatinet A, Florkin B, Gobert D, Lambotte O, De Somer L, et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 2011;118(18):4798–807. https://doi.org/10.1182/blood-2011-04-347641.

    Article  CAS  PubMed  Google Scholar 

  91. Del Bel KL, Ragotte RJ, Saferali A, Lee S, Vercauteren SM, Mostafavi SA, et al. JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J Allergy Clin Immunol. 2017;139(6):2016–20 e5. https://doi.org/10.1016/j.jaci.2016.12.957.

    Article  CAS  PubMed  Google Scholar 

  92. McLean-Tooke A, Spickett GP, Gennery AR. Immunodeficiency and autoimmunity in 22q11.2 deletion syndrome. Scand J Immunol. 2007;66(1):1–7. https://doi.org/10.1111/j.1365-3083.2007.01949.x.

    Article  CAS  PubMed  Google Scholar 

  93. Biggs CM, Keles S, Chatila TA. DOCK8 deficiency: insights into pathophysiology, clinical features and management. Clin Immunol. 2017;181:75–82. https://doi.org/10.1016/j.clim.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Battersby AC, Braggins H, Pearce MS, Cale CM, Burns SO, Hackett S, et al. Inflammatory and autoimmune manifestations in X-linked carriers of chronic granulomatous disease in the United Kingdom. J Allergy Clin Immunol. 2017;140(2):628–30 e6. https://doi.org/10.1016/j.jaci.2017.02.029.

    Article  PubMed  Google Scholar 

  95. Magnani A, Brosselin P, Beaute J, de Vergnes N, Mouy R, Debre M, et al. Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J Allergy Clin Immunol. 2014;134(3):655–62 e8. https://doi.org/10.1016/j.jaci.2014.04.014.

    Article  PubMed  Google Scholar 

  96. Agarwal S, Cunningham-Rundles C. Autoimmunity in common variable immunodeficiency. Curr Allergy Asthma Rep. 2009;9(5):347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jesus AA, Duarte AJ, Oliveira JB. Autoimmunity in hyper-IgM syndrome. J Clin Immunol. 2008;28(Suppl 1):S62–6. https://doi.org/10.1007/s10875-008-9171-x.

    Article  CAS  PubMed  Google Scholar 

  98. Notarangelo LD, Kim MS, Walter JE, Lee YN. Human RAG mutations: biochemistry and clinical implications. Nat Rev Immunol. 2016;16(4):234–46. https://doi.org/10.1038/nri.2016.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Catucci M, Castiello MC, Pala F, Bosticardo M, Villa A. Autoimmunity in wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol. 2012;3:209. https://doi.org/10.3389/fimmu.2012.00209.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Eisenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gans, M.D., Eisenberg, R. (2021). Immune Dysregulation Leading to Autoimmunity. In: Bernstein, J.A. (eds) Primary and Secondary Immunodeficiency. Springer, Cham. https://doi.org/10.1007/978-3-030-57157-3_14

Download citation

Publish with us

Policies and ethics

Navigation