Antimycobacterial Attributes of Mitochondria: An Insight into Host Defense Mechanisms

  • Chapter
  • First Online:
Advances in Host-Directed Therapies Against Tuberculosis

Abstract

Tuberculosis (TB) is a major global health problem caused by Mycobacterium tuberculosis (MTB). According to the World Health Organization (WHO), nearly one third of the global population is infected with TB [1]. MTB is inhaled in the form of aerosols and primarily infect the alveolar macrophage inside the lungs. As the bacteria have co-evolved with humans over the course of thousands of years, MTB has developed several mechanisms to escape from the host defense machinery and replicate and survive intracellularly. MTB secrete various virulence factors, which modulate macrophage functions by preventing phagosome-lysosome fusion, blocking phagosomal acidification, manipulating host cell proteins, and, perhaps most importantly, by regulating cell death pathways through targeting of cellular organelles, such as mitochondria [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO. TB burden estimates, notifications and treatment outcomes. Global Tuberculosis Report. 2018. https://doi.org/10.1001/jama.2014.11450.

  2. Sturgill-Koszycki S et al (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681

    Article  CAS  Google Scholar 

  3. Dubey RK (2016) Assuming the role of mitochondria in mycobacterial infection. Int J Mycobacteriol:1–5. https://doi.org/10.1016/j.ijmyco.2016.06.001

  4. Molloy A, Laochumroonvorapong P, Kaplan G (1994) Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus calmette-guérin. J Exp Med. https://doi.org/10.1084/jem.180.4.1499

  5. Danial N, Korsmeyer S (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  Google Scholar 

  6. Hengartner MO (2000) The biochemistry of apoptosis. Nature. https://doi.org/10.1038/35037710

  7. Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res. https://doi.org/10.1006/excr.2000.4840

  8. Suliman A, Lam A, Datta R, Srivastava RK (2001) Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene. https://doi.org/10.1038/sj.onc.1204282

  9. Candé C et al (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene. https://doi.org/10.1038/sj.onc.1207279

  10. Sax JK et al (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. https://doi.org/10.1038/ncb866

  11. Saelens X et al (2004) Toxic proteins released from mitochondria in cell death. Oncogene. https://doi.org/10.1038/sj.onc.1207523

  12. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm2308

  13. Fine-Coulson K, Giguère S, Quinn FD, Reaves BJ (2015) Infection of A549 human type II epithelial cells with Mycobacterium tuberculosis induces changes in mitochondrial morphology, distribution and mass that are dependent on the early secreted antigen, ESAT-6. Microbes Infect:1–9. https://doi.org/10.1016/j.micinf.2015.06.003

  14. Stavru F, Bouillaud F, Sartori A, Ricquier D, Cossart P (2011) Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc Natl Acad Sci U S A 108:3612–3617

    Article  CAS  Google Scholar 

  15. Nair S et al (2018) Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J Exp Med. https://doi.org/10.1084/jem.20180118

  16. Joseph S, Yuen A, Singh V, Hmama Z (2017) Mycobacterium tuberculosis Cpn60.2 (GroEL2) blocks macrophage apoptosis via interaction with mitochondrial mortalin. Biol Open. https://doi.org/10.1242/bio.023119

  17. Sohn H et al (2011) Targeting of Mycobacterium tuberculosis heparin-binding hemagglutinin to mitochondria in macrophages. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002435

  18. Cadieux N et al (2011) Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein. Microbiology 157:793–804

    Article  CAS  Google Scholar 

  19. Lee KI et al (2016) Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth. Sci Rep. https://doi.org/10.1038/srep37804

  20. Jamwal S et al (2013) Characterizing virulence-specific perturbations in the mitochondrial function of macrophages infected with Mycobacterium tuberculosis. Sci Rep. https://doi.org/10.1038/srep01328

  21. Reshi ML, Su YC, Hong JR (2014) RNA viruses: ROS-mediated cell death. Int J Cell Biol. https://doi.org/10.1155/2014/467452

  22. Duan L, Gan H, Golan DE, Remold HG (2002) Critical role of mitochondrial damage in determining outcome of macrophage infection with Mycobacterium tuberculosis. J Immunol. https://doi.org/10.4049/jimmunol.169.9.5181

  23. Warne J et al (2016) Selective inhibition of the mitochondrial permeability transition pore protects against neurodegeneration in experimental multiple sclerosis. J Biol Chem 291:4356–4373

    Article  CAS  Google Scholar 

  24. Blagih J et al (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses invivo. Immunity 42:41–54

    Article  CAS  Google Scholar 

  25. Koeken VACM, van Crevel R, Netea MG (2018) T cell metabolism has evolved to tolerate tuberculosis. Cell Metab 28:332–333

    Article  CAS  Google Scholar 

  26. Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485

    Article  CAS  Google Scholar 

  27. Vashisht R, Brahmachari SK (2015) Metformin as a potential combination therapy with existing front-line antibiotics for tuberculosis. J Transl Med 13:1–3

    Article  CAS  Google Scholar 

  28. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585

    Article  CAS  Google Scholar 

  29. Yew WW, Chang KC, Chan DP, Zhang Y (2019) Metformin as a host-directed therapeutic in tuberculosis: is there a promise? Tuberculosis 115:76–80

    Article  CAS  Google Scholar 

  30. Usselman CWNSSJRB (2017) Metabolism and the uprMT. Physiol Behav 176:139–148

    Article  Google Scholar 

  31. Melber A, Haynes CM (2018) UPR mt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 28:281–295

    Article  CAS  Google Scholar 

  32. Kim TS et al (2019) SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy. https://doi.org/10.1080/15548627.2019.1582743

  33. Asalla S, Mohareer K, Banerjee S (2017) Small molecule mediated restoration of mitochondrial function augments anti-mycobacterial activity of human macrophages subjected to cholesterol induced asymptomatic dyslipidemia. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2017.00439

  34. Gan H et al (2005) Enhancement of antimycobacterial activity of macrophages by stabilization of inner mitochondrial membrane potential. J Infect Dis. https://doi.org/10.1086/428906

  35. Roca FJ, Ramakrishnan L (2013) TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell. https://doi.org/10.1016/j.cell.2013.03.022

  36. Gräb J et al (2019) Corticosteroids inhibit Mycobacterium tuberculosis-induced necrotic host cell death by abrogating mitochondrial membrane permeability transition. Nat Commun. https://doi.org/10.1038/s41467-019-08405-9

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, R.K., Narain, A. (2021). Antimycobacterial Attributes of Mitochondria: An Insight into Host Defense Mechanisms. In: Karakousis, P.C., Hafner, R., Gennaro, M.L. (eds) Advances in Host-Directed Therapies Against Tuberculosis . Springer, Cham. https://doi.org/10.1007/978-3-030-56905-1_9

Download citation

Publish with us

Policies and ethics

Navigation