Buzzing Lips: Sound Generation in Brass Instruments

  • Chapter
  • First Online:
The Science of Brass Instruments

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 743 Accesses

Abstract

This chapter deals with the vibrating lips as a sound source: this is a defining feature of all labrosones (brass instruments). The main processes through which the air flow generated by the player’s lungs can initiate and sustain the vibration of the lips are covered. The facial muscles which control the embouchure of a brass player are described, and the complex motion of the lips when sounding a note is illustrated by the results of experimental studies using both human players and artificial lips. Simplified descriptions of lip motion are examined, including sliding door and swinging door models, and an equation representing the lips as a single degree of freedom mechanical oscillator is derived. The application of the Bernoulli equation to the flow of air through the lip channel, taking into account flow separation and jet formation at the exit, leads to a second equation describing the relationship between the flow velocity and the pressure difference across the lips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi, S. and Sato, M. (1995). Time-domain simulation of sound production in the brass instrument. J. Acoust. Soc. Am. 97, 3850–3861, https://doi.org/10.1121/1.412398.

    Article  ADS  Google Scholar 

  • Auregan, Y. and Depollier, C. (1995). Snoring: linear stability analysis and in-vitro experiments. J. Sound Vib. 188, 39–54.

    Article  ADS  Google Scholar 

  • Ayers, R. D. (1998). New perspectives on brass instruments. Proc. International Symposium on Musical Acoustics, Leavenworth, USA, 129–134.

    Google Scholar 

  • Ayers, R. D. (2001). Basic tests for models of the lip reed. Proc. International Symposium on Musical Acoustics, Perugia, Italy, 83–86.

    Google Scholar 

  • Bouasse, H. (1929). Instruments à vent tomes I et II). Paris, Delagrave; repr. with additional material by Jean Kergomard, Paris, Blanchard (1986).

    Google Scholar 

  • Boutin, H., Fletcher, N., Smith, J. and Wolfe, J. (2015b). Relationships between pressure, flow, lip motion, and upstream and downstream impedances for the trombone. J. Acoust. Soc. Am. 137, 1195–1209, https://doi.org/10.1121/1.4908236.

    Article  ADS  Google Scholar 

  • Bromage, S. R. (2007). Visualisation of the lip motion of brass instrument players, and investigations of an artificial mouth as a tool for comparative studies of instruments. Ph.D. thesis, University of Edinburgh.

    Google Scholar 

  • Bromage, S., Campbell, M. and Gilbert, J. (2010). Open areas of vibrating lips in trombone playing. Acta Acust. united Ac. 96, 603–613, https://doi.org/10.3813/AAA.918315.

    Article  Google Scholar 

  • Copley, D. C. and Strong, W. J. (1996). A stroboscopic study of lip vibrations in a trombone. J. Acoust. Soc. Am. 99, 1219–1226, https://doi.org/10.1121/1.414603.

    Article  ADS  Google Scholar 

  • Cullen, J. S. (2000). A study of brass instrument acoustics using an artificial lip reed mechanism, laser Doppler anemometry and other techniques. Ph.D. thesis, University of Edinburgh.

    Google Scholar 

  • Cullen, J., Gilbert, J. and Campbell, D. M. (2000). Brass instruments: linear stability analysis and experiments with an artificial mouth. Acta Acust united Ac 86, 704–724.

    Google Scholar 

  • Dalmont, J. P., Gazengel, B., Gilbert, J. and Kergomard, J. (1995). Some aspects of tuning and clean intonation in reed instruments. Appl. Acoust. 46(1), 19–60.

    Article  Google Scholar 

  • Elliott, S. J. and Bowsher, J. M. (1982). Regeneration in brass wind instruments. J. Sound Vib. 83, 181–217.

    Article  ADS  Google Scholar 

  • Fabre, B., Gilbert, J. and Hirschberg, A. (2018). Modeling of Wind Instruments. In R. Bader (Ed.), Springer Handbook of Systematic Musicology, pp. 121–139. New York, Springer.

    Chapter  Google Scholar 

  • Farkas, P. (1962) The Art of Brass Playing, Rochester, Wind Music.

    Google Scholar 

  • Fletcher, N. H. (1979). Excitation mechanisms in woodwind and brass instruments. Acustica 43, 63–72.

    Google Scholar 

  • Fletcher, N. H. (1993). Autonomous vibration of simple pressure-controlled valves in gas flows. J. Acoust. Soc. Am. 93, 2172–2180, https://doi.org/10.1121/1.406857.

    Article  ADS  Google Scholar 

  • Fletcher, N. H. and Rossing, T. D. (1998). The Physics of Musical Instruments, 2nd Ed. New York, Springer.

    Book  Google Scholar 

  • Fowler, J. E. (1874). Improvements in mouth-pieces for musical instruments. U.S. Patent No. 147759, Feb. 24 1874.

    Google Scholar 

  • Gilbert, J. and Petiot, J. F. (1997). Brass instruments: some theoretical and experimental results. Proc. International Symposium on Musical Acoustics, Edinburgh, UK: in Proc. Ins. Ac. 19(5), 391–400.

    Google Scholar 

  • Gilbert, J., Ponthus, S. and Petiot, J. F. (1998). Artificial buzzing lips and brass instruments: experimental results. J. Acoust. Soc. Am. 104, 1627–1632. https://doi.org/10.1121/1.424375.

    Article  ADS  Google Scholar 

  • Helmholtz, H. L. F. (1877). Die Lehre von den Tonempfingungen, 4th Ed. Braunschweig, Friedrich Vieweg. English translation with additional material: Ellis, A. J. On the Sensations of Tone, 2nd Ed. London, Longman, Green and Co. (1885); repr. New York, Dover (1954)

    Google Scholar 

  • Hirschberg, A., Van de Laar, R. W. A., Marrou-Maurières, J. P., Wijnands, A. P. J., Dane, J. H., Kruijswijk, S. G. and Houtsma, A. J. M. (1990). A quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments. Acustica 70, 146–154.

    Google Scholar 

  • Hirschberg, A., Kergomard, J., and Weinreich, G. (Eds.). (1995). Mechanics of musical instruments. New York, Springer.

    MATH  Google Scholar 

  • Hirschberg, A., Pelorson, X. and Gilbert, J. (1996a). Aeroacoustics of Musical Instruments. Meccanica 31, 131–141.

    Article  Google Scholar 

  • Holmes, P. J. (1977). Bifurcations to divergence in flow induced oscillations: finite dimensional analysis. J. Sound Vib. 53, 471–503.

    Article  ADS  MathSciNet  Google Scholar 

  • Ishizaka, K. and Flanagan, J. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Syst. Tech. J. 51, 1233–1268.

    Article  Google Scholar 

  • Kent, E. L. (1956). The Inside Story of Brass Instruments. Elkhart, C. G. Conn Ltd.

    Google Scholar 

  • Lous, N. J. C., Hofmans, G. C. J., Veldhuis, R. N. J. and Hirschberg, A. (1999). A symmetrical two-mass vocal fold model coupled to vocal tract and trachea, with application to prosthesis design, Acta Acust. united Ac, 84, 1135–1150.

    Google Scholar 

  • Martin, D. W. (1942). Lip vibrations in a cornet mouthpiece. J. Acoust. Soc. Am. 13, 305–308, https://doi.org/10.1121/1.1902242.

    Article  ADS  Google Scholar 

  • Miklós, A., Angster, J., Pitsch, S. and Rossing, T. D. (2003). Reed vibration in lingual organ pipes without the resonators. J. Acoust. Soc. Am. 113, 1081–1091, https://doi.org/10.1121/1.1534101.

    Article  ADS  Google Scholar 

  • Msallam, R., Dequidt, S., Caussé, R. and Tassart, S. (2002). Physical model of the trombone including nonlinear effects. Application to sound synthesis of loud tones. Acta Acust. United Ac. 86, 725–736.

    Google Scholar 

  • Nederveen, C. J. (1998a). Acoustical Aspects of Woodwind Instruments, 2nd. Ed. with additional material, Northern Illinois University, 1998.

    Google Scholar 

  • Newton, M., Campbell, D. M. and Gilbert, J. (2008). Mechanical response measurements of real and artificial brass player’s lips. J. Acoust. Soc. Am. 123, EL14–EL20, https://doi.org/10.1121/1.2805042.

    Article  ADS  Google Scholar 

  • Norman, L., Chick, J. P., Campbell, D. M., Myers, A. and Gilbert, J. (2010). Player control of ‘brassiness’ at intermediate dynamic levels in brass instruments. Acta Acust. United Ac. 96, 614–621, https://doi.org/10.3813/AAA.918316.

    Article  Google Scholar 

  • Pelorson, X., Hirschberg, A., van Hassel, R. R., Wijnands, A. P. J. and Auregan, Y. (1994). Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model. J. Acoust. Soc. Am. 96, 3416–3431, https://doi.org/10.1121/1.411449.

    Google Scholar 

  • Petiot, J. F. (2003). Measurement of the force applied to the mouthpiece during brass instrument playing. Proc. Stockholm Musical Acoustics Conference SMAC03, Stockholm, Sweden, 225–228.

    Google Scholar 

  • Petiot, J. F., Teissier, F., Gilbert, J. and Campbell, M. (2003). Comparative analysis of brass wind instruments using an artificial mouth: first results. Acta Acust. United Ac. 89, 974–979.

    Google Scholar 

  • Richards, O. F. (2003). Investigation of the lip reed using computational modelling and experimental studies with an artificial mouth. Ph.D. thesis, University of Edinburgh.

    Google Scholar 

  • Richards, O. F., Campbell, D. M. and Gilbert, J. (2003). Modelling the lip reed: computational and experimental investigations of two-mode inward/outward striking behaviour. Proc. Stockholm Musical Acoustics Conference (SMAC03), Stockholm, Sweden, 233–235.

    Google Scholar 

  • Ricot, D., Caussé, R. and Misdariis, N. (2005). Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling; the example of the accordion reed. J. Acoust. Soc. Am. 117, 2279–2290, https://doi.org/10.1121/1.1852546.

    Article  ADS  Google Scholar 

  • Stevenson, S. (2009). Experimental Investigations of Lip Motion in Brass Instrument Playing. Ph.D. thesis, University of Edinburgh.

    Google Scholar 

  • Story, B. H., Titze, I. R. and Hoffman, E. A. (1996). Vocal tract area functions from magnetic resonance imaging. J. Acoust. Soc. Am. 100, 537–554, https://doi.org/10.1121/1.415960.

    Article  ADS  Google Scholar 

  • Titze, I. R. (1988). The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83, 1536–1552, https://doi.org/10.1121/1.395910.

    Article  ADS  Google Scholar 

  • Vergez, C. and Rodet, X. (1997). Model of the trumpet functioning: real time simulation and experiments with an artificial mouth model. Proc. International Symposium on Musical Instruments, Edinburgh.

    Google Scholar 

  • Vergez, C. and Rodet, X. (2001a). Trumpet and trumpeter: physical modelling for sound synthesis. Proc. International Congress on Acoustics, Rome.

    Google Scholar 

  • Wilson, T. A. and Beavers, G. S. (1974). Operating modes of the clarinet. J. Acoust. Soc. Am. 56, 653–658, https://doi.org/10.1121/1.1903304.

    Article  ADS  Google Scholar 

  • Yoshikawa, S. (1995) Acoustical behaviour of brass player’s lips. J. Acoust. Soc. Am. 97, 1929–1939, https://doi.org/10.1121/1.412066.

    Article  ADS  Google Scholar 

  • Yoshikawa, S. and Muti, Y. (2003). Lip wave generation in horn players and the estimation of lip-tissue elasticity. Acta Acust. United Ac. 89, 145–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campbell, M., Gilbert, J., Myers, A. (2021). Buzzing Lips: Sound Generation in Brass Instruments. In: The Science of Brass Instruments. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-55686-0_3

Download citation

Publish with us

Policies and ethics

Navigation