Determining the Gain and Directivity of Antennas Using Support Vector Regression

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1250))

Included in the following conference series:

  • 1112 Accesses

Abstract

The paper presents the application of support vector regression technique for the modelling of antennas. Two different antennas were modelled with different properties. The first modelling was for a helical antenna with varying parameters to determine the gain of antenna. In the second modelling, an equilateral triangular patch antenna with varying properties for the design was considered for the determination of the directivity of the antenna. The support vector regression modelled both of the antennas very well. In helical antenna, the radial kernel with ν-regression produced only 0.143 dBi average error. In equilateral triangular patch antenna, the radial kernel with ε-regression produced only 0.126 dBi average error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhong, H., Wang, J., Jia, H., Mu, Y., Lv, H.: Vector field-based support vector regression for building energy consumption prediction. Appl. Energy 242, 403–414 (2019). https://doi.org/10.1016/j.apenergy.2019.03.078

    Article  Google Scholar 

  2. Trafalis, T.B., Ince, H.: Support vector machine for regression. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (2000). https://doi.org/10.1109/ijjcnn.2000.859420

  3. Cheng, J., Yu, D., Yang, Y.: Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform. Mech. Syst. Signal Process. 21(3), 1197–1211 (2007). https://doi.org/10.1016/j.ymssp.2005

    Article  Google Scholar 

  4. Ulker, E.D., Ulker, S.: Unemployment rate and GDP prediction using support vector regression. In: AISS 2019 International Conference on Advanced Information Science and System, Singapore, Article No. 17, pp. 1–5 (2019). https://doi.org/10.1145/3373477.3373494

  5. Yang, P., Zhu, J., **ao, Y., Chen, Z.: Antenna selection for MIMO system based on pattern recognition. Digit. Commun. Netw. 5, 34–39 (2019). https://doi.org/10.1016/j.dcan.2018.10.0001

    Article  Google Scholar 

  6. Tokan, N.T., Güneş, F.: Support vector characterization of the microstrip antennas based on measurements. Prog. Electromagn. Res. B 5, 49–61 (2008). https://doi.org/10.2528/PIERB08013006

    Article  Google Scholar 

  7. Martinez-Ramon, M., Rojo-Alvarez, J.L., Camps-Valls, G., Christodoulou, C.G.: Kernel antenna array processing. IEEE Trans. Antennas Propag. 55(3), 642–650 (2007). https://doi.org/10.1109/TAP.2007.891550

    Article  Google Scholar 

  8. Lin, H., Shin, W.-Y., Joung, J.: Support vector machine-based transmit antenna allocation for multiuser communication systems. Entropy 21, 471 (2019). https://doi.org/10.3390/e21050471

    Article  MathSciNet  Google Scholar 

  9. Ulker, S.: Support vector regression analysis for the design of feed in a rectangular patch antenna. In: ISMSIT 3rd International Symposium on Multidisciplinary Innovative Technologies (2019). https://doi.org/10.1109/ismsit.2019.8932929

  10. Angiulli, G., Cacciola, M., Versaci, M.: Microwave devices and antenna modelling by support vector regression machines. IEEE Trans. Magn. 43(4), 1589–1592 (2007). https://doi.org/10.1109/TMAG.2007.892480

    Article  Google Scholar 

  11. Vapnik, V.N., Chervonenkis, A.Y.: The uniform convergence of frequencies of the appearance of events to their probabilities. Dokl. Akad. Nauk SSSR 181(4), 781–783 (1968)

    MathSciNet  MATH  Google Scholar 

  12. Schölkopf, B., Burges, C., Vapnik, V.: Incorporating invariances in support vector learning machines. In: International Conference on Artificial Neural Networks ICANN, vol. 96, pp. 47–52 (1996)

    Google Scholar 

  13. Haykin, S.: Neural Networks, 2nd edn. Prentice Hall, New Jersey (1999)

    MATH  Google Scholar 

  14. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems 9, pp. 155–161. MIT Press, Cambridge, MA (1997)

    Google Scholar 

  15. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statist. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  16. Khosravi, A., Koury, R.N.N., Machado, L., Pabon, J.J.G.: Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system. Sustain. Energy Technol. Assess. 25, 146–160 (2018). https://doi.org/10.1016/j.seta.2018.01.001

    Article  Google Scholar 

  17. Peng, Y., Albuquerque, P.H.M., de Sa, J.M.C., Padula, A.J.A., Montenegro, M.R.: The best of two worlds: forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression. Expert Syst. Appl. 97, 177–192 (2018). https://doi.org/10.1016/j.eswa.2017.12.004

    Article  Google Scholar 

  18. Danandeh Mehr, A., Nourani, V., Karimi Khosrowshahi, V., Ghorbani, M.A.: A hybrid support vector regression–firefly model for monthly rainfall forecasting. Int. J. Environ. Sci. Technol. 16(1), 335–346 (2018). https://doi.org/10.1007/s13762-018-1674-2

    Article  Google Scholar 

  19. Baydaroğlu, Ö., Koçak, K., Duran, K.: River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach. Meteorol. Atmos. Phys. 130(3), 349–359 (2017). https://doi.org/10.1007/s00703-017-0518-9

    Article  Google Scholar 

  20. Tripathi A., Thakare V.V., Singhal, P.K.: Analysis of different performance parameters of equilateral triangular microstrip patch using artificial neural network. Int. J. Adv. Innov. Thoughts Ideas 2(3) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadık Ulker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ulker, E.D., Ulker, S. (2021). Determining the Gain and Directivity of Antennas Using Support Vector Regression. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham. https://doi.org/10.1007/978-3-030-55180-3_5

Download citation

Publish with us

Policies and ethics

Navigation