Embryology of the Heart

  • Chapter
  • First Online:
Skin and the Heart

Abstract

The heart is the first organ to form during embryonic development. Soon after its formation, the heart begins to beat highlighting the importance of cardiac function in the develo** embryo. However, the original embryonic heart is just a primordial organ that during gestation will undergo complex and finely regulated morphogenetic processes to give rise to the final mature organ. This chapter aims to offer to the reader an overview of the morphogenetic processes controlling the formation of the heart during embryonic development. It starts describing the formation of the primitive heart tube from the cardiac progenitors and how the primitive cardiac tube undergoes loo**. Then, we focus on the developmental processes controlling the formation of the different cardiac regions including cardiac chambers, cardiac valves, cardiac septa, cardiac conduction system, and the epicardium and coronary vessels. In the chapter, we have introduced the role of ectodermal derivatives during heart development such as the important role of neural crest cells derivatives in the patterning of the outflow tract region and the innervation of the heart. Throughout the text we have also highlighted the congenital heart conditions associated with abnormal heart development as an introduction to the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83:1223–67.

    Article  CAS  PubMed  Google Scholar 

  2. Meilhac SM, Esner M, et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell. 2004;6:685–98.

    Article  CAS  PubMed  Google Scholar 

  3. Moorman AF, Christoffels VM, et al. The heart-forming fields: one or multiple? Philos Trans R Soc Lond Ser B Biol Sci. 2007;362:1257–65.

    Article  Google Scholar 

  4. Lescroart F, Chabab S, et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol. 2014;16:829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cai CL, Liang X, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5:877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De La Cruz MV, Sanchez Gomez C, et al. Experimental study of the development of the Truncus and the Conus in the Chick embryo. J Anat. 1977;123:661–86.

    PubMed  PubMed Central  Google Scholar 

  7. De La Cruz MV, Sanchez-Gomez C, et al. The primitive cardiac regions in the straight tube heart (stage 9) and their anatomical expression in the mature heart: an experimental study in the Chick embryo. J Anat. 1989;165:121–31.

    Google Scholar 

  8. Van Den Berg G, Moorman AF. Concepts of cardiac development in retrospect. Pediatr Cardiol. 2009;30:580–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hamada, H. & Tam, P. P. 2014. Mechanisms of left-right asymmetry and patterning: driver, mediator and responder. F1000prime Rep, 6, 110.

    Google Scholar 

  10. Le Garrec JF, Dominguez JN, et al. A predictive model of asymmetric morphogenesis from 3d reconstructions of mouse heart loo** dynamics. elife. 2017;6

    Google Scholar 

  11. Van Den Berg G, Abu-Issa R, et al. A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res. 2009;104:179–88.

    Article  PubMed  Google Scholar 

  12. Soufan AT, Van Den Berg G, et al. Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ Res. 2006;99:545–52.

    Article  CAS  PubMed  Google Scholar 

  13. Christoffels VM, Habets PE, et al. Chamber formation and morphogenesis in the develo** mammalian heart. Dev Biol. 2000;223:266–78.

    Article  CAS  PubMed  Google Scholar 

  14. Moorman AF, Schumacher CA, et al. Presence of functional sarcoplasmic reticulum in the develo** heart and its confinement to chamber myocardium. Dev Biol. 2000;223:279–90.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas T, Yamagishi H, et al. The Bhlh factors, Dhand and Ehand, specify pulmonary and systemic cardiac ventricles independent of left-right sidedness. Dev Biol. 1998;196:228–36.

    Article  CAS  PubMed  Google Scholar 

  16. Christoffels VM, Hoogaars WM, et al. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn. 2004;229:763–70.

    Article  CAS  PubMed  Google Scholar 

  17. Hoogaars WM, Tessari A, et al. The transcriptional repressor Tbx3 delineates the develo** central conduction system of the heart. Cardiovasc Res. 2004;62:489–99.

    Article  CAS  PubMed  Google Scholar 

  18. Ben-Shachar G, Arcilla RA, et al. Ventricular Trabeculations in the Chick embryo heart and their contribution to ventricular and muscular Septal development. Circ Res. 1985;57:759–66.

    Article  CAS  PubMed  Google Scholar 

  19. Sedmera D, Pexieder T, et al. Developmental patterning of the myocardium. Anat Rec. 2000;258:319–37.

    Article  CAS  PubMed  Google Scholar 

  20. Negro A, Brar BK, et al. Essential roles of Her2/Erbb2 in cardiac development and function. Recent Prog Horm Res. 2004;59:1–12.

    Article  CAS  PubMed  Google Scholar 

  21. Grego-Bessa J, Luna-Zurita L, et al. Notch signaling is essential for ventricular chamber development. Dev Cell. 2007;12:415–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Del Monte-Nieto G, Ramialison M, et al. Control of cardiac jelly dynamics by Notch1 and Nrg1 defines the building plan for Trabeculation. Nature. 2018;557:439–45.

    Article  PubMed  Google Scholar 

  23. Cherian AV, Fukuda R, et al. N-cadherin Relocalization during cardiac Trabeculation. Proc Natl Acad Sci U S A. 2016;113:7569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stankunas K, Hang CT, et al. Endocardial Brg1 represses Adamts1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell. 2008;14:298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian X, Li Y, et al. Identification of a hybrid myocardial zone in the mammalian heart after birth. Nat Commun. 2017;8:87.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jenni R, Oechslin E, et al. Echocardiographic and Pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001;86:666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bourke LM, Del Monte-Nieto G, et al. Loss of rearranged L-Myc fusion (Rlf) results in defects in heart development in the mouse. Differentiation. 2016;94:8–20.

    Article  PubMed  Google Scholar 

  28. D’amato, G., Luxan, G., et al. 2016. Sequential notch activation regulates ventricular chamber development. Nat Cell Biol, 18, 7-20.

    Google Scholar 

  29. Kobayashi J, Yoshida M, et al. Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of Nkx2-5, Hand1, and Notch1 in Hypoplastic left heart syndrome. PLoS One. 2014;9:E102796.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Luxan G, Casanova JC, et al. Mutations in the notch pathway regulator Mib1 cause left ventricular noncompaction cardiomyopathy. Nat Med. 2013;19:193–201.

    Article  CAS  PubMed  Google Scholar 

  31. Ma L, Lu MF, et al. Bmp2 is essential for cardiac cushion epithelial-Mesenchymal transition and myocardial patterning. Development. 2005;132:5601–11.

    Article  CAS  PubMed  Google Scholar 

  32. Yamada M, Revelli JP, et al. Expression of Chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for Bmp2 induction of Tbx2. Dev Biol. 2000;228:95–105.

    Article  CAS  PubMed  Google Scholar 

  33. Krug EL, Runyan RB, et al. Protein extracts from early embryonic hearts initiate cardiac endothelial Cytodifferentiation. Dev Biol. 1985;112:414–26.

    Article  CAS  PubMed  Google Scholar 

  34. Eisenberg LM, Markwald RR. Molecular regulation of Atrioventricular Valvuloseptal morphogenesis. Circ Res. 1995;77:1–6.

    Article  CAS  PubMed  Google Scholar 

  35. Markwald RR, Fitzharris TP, et al. Structural development of Endocardial cushions. Am J Anat. 1977;148:85–119.

    Article  CAS  PubMed  Google Scholar 

  36. Markwald RR, Fitzharris TP, et al. Structural analysis of Endocardial Cytodifferentiation. Dev Biol. 1975;42:160–80.

    Article  CAS  PubMed  Google Scholar 

  37. Garside VC, Chang AC, et al. Co-Ordinating notch, bmp, and Tgf-Beta signaling during heart valve development. Cell Mol Life Sci. 2013;70:2899–917.

    Article  CAS  PubMed  Google Scholar 

  38. Sugi Y, Yamamura H, et al. Bone morphogenetic Protein-2 can mediate myocardial regulation of Atrioventricular cushion Mesenchymal cell formation in mice. Dev Biol. 2004;269:505–18.

    Article  CAS  PubMed  Google Scholar 

  39. Rivera-Feliciano J, Tabin CJ. Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field. Dev Biol. 2006;295:580–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Timmerman LA, Grego-Bessa J, et al. Notch promotes epithelial-Mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18:99–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luna-Zurita L, Prados B, et al. Integration of a notch-dependent Mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest. 2010;120:3493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hay ED. The Mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn. 2005;233:706–20.

    Article  CAS  PubMed  Google Scholar 

  43. Peinado H, Olmeda D, et al. Snail, Zeb and Bhlh factors in tumour progression: an Alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

    Article  CAS  Google Scholar 

  44. Lander R, Nasr T, et al. Interactions between twist and other Core epithelial-Mesenchymal transition factors are controlled by Gsk3-mediated phosphorylation. Nat Commun. 2013;4:1542.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Peiro S, Escriva M, et al. Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res. 2006;34:2077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takkunen M, Grenman R, et al. Snail-dependent and -independent epithelial-Mesenchymal transition in Oral squamous carcinoma cells. J Histochem Cytochem. 2006;54:1263–75.

    Article  CAS  PubMed  Google Scholar 

  47. Wels C, Joshi S, et al. Transcriptional activation of Zeb1 by slug leads to cooperative regulation of the epithelial-Mesenchymal transition-like phenotype in melanoma. J Invest Dermatol. 2011;131:1877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kisanuki YY, Hammer RE, et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230:230–42.

    Article  CAS  PubMed  Google Scholar 

  49. Gittenberger-De Groot AC, Vrancken Peeters MP, et al. Epicardium-derived cells contribute a novel population to the Myocardial Wall and the Atrioventricular cushions. Circ Res. 1998;82:1043–52.

    Article  CAS  PubMed  Google Scholar 

  50. Kirby ML, Gale TF, et al. Neural crest cells contribute to Normal Aorticopulmonary Septation. Science. 1983;220:1059–61.

    Article  CAS  PubMed  Google Scholar 

  51. Plein A, Fantin A, et al. Neural crest cells in cardiovascular development. Curr Top Dev Biol. 2015;111:183–200.

    Article  CAS  PubMed  Google Scholar 

  52. Runyan RB, Markwald RR. Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev Biol. 1983;95:108–14.

    Article  CAS  PubMed  Google Scholar 

  53. Ransom J, Srivastava D. The genetics of cardiac birth defects. Semin Cell Dev Biol. 2007;18:132–9.

    Article  CAS  PubMed  Google Scholar 

  54. Brannan CI, Perkins AS, et al. Targeted disruption of the Neurofibromatosis Type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 1994;8:1019–29.

    Article  CAS  PubMed  Google Scholar 

  55. Jacks T, Shih TS, et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet. 1994;7:353–61.

    Article  CAS  PubMed  Google Scholar 

  56. Lakkis MM, Epstein JA. Neurofibromin modulation of Ras activity is required for Normal Endocardial-Mesenchymal transformation in the develo** heart. Development. 1998;125:4359–67.

    Article  CAS  PubMed  Google Scholar 

  57. Jensen B, Wang T, et al. Evolution and development of the atrial septum. Anat Rec (Hoboken). 2019;302:32–48.

    Article  Google Scholar 

  58. Anderson RH, Brown NA, et al. Development and structure of the atrial septum. Heart. 2002;88:104–10.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Poelmann RE, Gittenberger-De Groot AC, et al. Evolution and development of ventricular Septation in the Amniote heart. PLoS One. 2014;9:E106569.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mohan RA, Mommersteeg MTM, et al. Embryonic Tbx3(+) Cardiomyocytes form the mature cardiac conduction system by progressive fate restriction. Development. 2018;145

    Google Scholar 

  61. Anderson RH, Spicer DE, et al. The development of Septation in the four-chambered heart. Anat Rec (Hoboken). 2014;297:1414–29.

    Article  Google Scholar 

  62. Franco D, Meilhac SM, et al. Left and right ventricular contributions to the formation of the Interventricular septum in the mouse heart. Dev Biol. 2006;294:366–75.

    Article  CAS  PubMed  Google Scholar 

  63. Koshiba-Takeuchi K, Mori AD, et al. Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature. 2009;461:95–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lamers WH, Moorman AF. Cardiac Septation: a late contribution of the embryonic primary myocardium to heart morphogenesis. Circ Res. 2002;91:93–103.

    Article  CAS  PubMed  Google Scholar 

  65. Jiang X, Rowitch DH, et al. Fate of the mammalian cardiac neural crest. Development. 2000;127:1607–16.

    Article  CAS  PubMed  Google Scholar 

  66. Lo CW, Cohen MF, et al. Cx43 gap junction gene expression and gap Junctional communication in mouse neural crest cells. Dev Genet. 1997;20:119–32.

    Article  CAS  PubMed  Google Scholar 

  67. Waldo K, Miyagawa-Tomita S, et al. Cardiac neural crest cells provide new insight into Septation of the cardiac outflow tract: aortic sac to ventricular Septal closure. Dev Biol. 1998;196:129–44.

    Article  CAS  PubMed  Google Scholar 

  68. Nishibatake M, Kirby ML, et al. Pathogenesis of persistent Truncus Arteriosus and Dextroposed aorta in the Chick embryo after neural crest ablation. Circulation. 1987;75:255–64.

    Article  CAS  PubMed  Google Scholar 

  69. Bockman DE, Kirby ML. Dependence of thymus development on derivatives of the neural crest. Science. 1984;223:498–500.

    Article  CAS  PubMed  Google Scholar 

  70. Van Mierop LH, Kutsche LM. Cardiovascular anomalies in Digeorge syndrome and importance of neural crest as a possible Pathogenetic factor. Am J Cardiol. 1986;58:133–7.

    Article  PubMed  Google Scholar 

  71. Gordan R, Gwathmey JK, et al. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7:204–14.

    Article  PubMed  PubMed Central  Google Scholar 

  72. De Jong F, Opthof T, et al. Persisting zones of slow impulse conduction in develo** chicken hearts. Circ Res. 1992;71:240–50.

    Article  PubMed  Google Scholar 

  73. Aanhaanen WT, Brons JF, et al. The Tbx2+ primary myocardium of the Atrioventricular Canal forms the Atrioventricular node and the base of the left ventricle. Circ Res. 2009;104:1267–74.

    Article  CAS  PubMed  Google Scholar 

  74. Van Weerd JH, Christoffels VM. The formation and function of the cardiac conduction system. Development. 2016;143:197–210.

    Article  PubMed  Google Scholar 

  75. Benson DW. Genetics of Atrioventricular conduction disease in humans. Anat Rec A Discov Mol Cell Evol Biol. 2004;280:934–9.

    Article  PubMed  Google Scholar 

  76. Brugada P, Brugada R, et al. The Brugada syndrome. Arch Mal Coeur Vaiss. 2005;98:115–22.

    CAS  PubMed  Google Scholar 

  77. Clancy CE, Kass RS. Inherited and acquired vulnerability to ventricular arrhythmias: cardiac Na+ and K+ channels. Physiol Rev. 2005;85:33–47.

    Article  CAS  PubMed  Google Scholar 

  78. Gollob MH, Green MS, et al. Identification of a gene responsible for familial Wolff-Parkinson-white syndrome. N Engl J Med. 2001;344:1823–31.

    Article  CAS  PubMed  Google Scholar 

  79. Manner J, Perez-Pomares JM, et al. The origin, formation and developmental significance of the Epicardium: a review. Cells Tissues Organs. 2001;169:89–103.

    Article  CAS  PubMed  Google Scholar 

  80. Nahirney PC, Mikawa T, et al. Evidence for an extracellular matrix bridge guiding Proepicardial cell migration to the myocardium of Chick embryos. Dev Dyn. 2003;227:511–23.

    Article  PubMed  Google Scholar 

  81. Ishii Y, Iwanaga M, et al. Protein-protein interactions between rat hepatic cytochromes P450 (P450s) and Udp-Glucuronosyltransferases (Ugts): evidence for the functionally active Ugt in P450-Ugt complex. Drug Metab Pharmacokinet. 2007;22:367–76.

    Article  CAS  PubMed  Google Scholar 

  82. Wessels A, Perez-Pomares JM. The Epicardium and Epicardially derived cells (Epdcs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004;276:43–57.

    Article  CAS  PubMed  Google Scholar 

  83. Kruithof BP, Van Wijk B, et al. Bmp and Fgf regulate the differentiation of multipotential pericardial mesoderm into the myocardial or Epicardial lineage. Dev Biol. 2006;295:507–22.

    Article  CAS  PubMed  Google Scholar 

  84. Schlueter J, Manner J, et al. Bmp is an important regulator of Proepicardial identity in the Chick embryo. Dev Biol. 2006;295:546–58.

    Article  CAS  PubMed  Google Scholar 

  85. Moore AW, Schedl A, et al. Yac transgenic analysis reveals Wilms’ tumour 1 gene activity in the proliferating Coelomic epithelium, develo** diaphragm and limb. Mech Dev. 1998;79:169–84.

    Article  CAS  PubMed  Google Scholar 

  86. Kirschner KM, Wagner N, et al. The Wilms tumor suppressor Wt1 promotes cell adhesion through transcriptional activation of the Alpha4integrin gene. J Biol Chem. 2006;281:31930–9.

    CAS  PubMed  Google Scholar 

  87. Martinez-Estrada OM, Lettice LA, et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of snail and E-cadherin. Nat Genet. 2009;42:89–93.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jenkins SJ, Hutson DR, et al. Analysis of the Proepicardium-Epicardium transition during the malformation of the Rxralpha−/− Epicardium. Dev Dyn. 2005;233:1091–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Del Monte G, Casanova JC, et al. Differential notch signaling in the Epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011;108:824–36.

    Article  PubMed  Google Scholar 

  90. Komiyama M, Ito K, et al. Origin and development of the Epicardium in the mouse embryo. Anat Embryol (Berl). 1987;176:183–9.

    Article  CAS  Google Scholar 

  91. Viragh S, Challice CE. The origin of the Epicardium and the embryonic myocardial circulation in the mouse. Anat Rec. 1981;201:157–68.

    Article  CAS  PubMed  Google Scholar 

  92. Hiruma T, Hirakow R. Epicardial formation in embryonic Chick heart: computer-aided reconstruction, scanning, and transmission electron microscopic studies. Am J Anat. 1989;184:129–38.

    Article  CAS  PubMed  Google Scholar 

  93. Lavine KJ, Yu K, et al. Endocardial and Epicardial derived Fgf signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005;8:85–95.

    Article  CAS  PubMed  Google Scholar 

  94. Pennisi DJ, Ballard VL, et al. Epicardium is required for the full rate of Myocyte proliferation and levels of expression of Myocyte Mitogenic factors Fgf2 and its receptor, Fgfr-1, but not for Transmural myocardial patterning in the embryonic Chick heart. Dev Dyn. 2003;228:161–72.

    Article  CAS  PubMed  Google Scholar 

  95. Kastner P, Grondona JM, et al. Genetic analysis of Rxr alpha developmental function: convergence of Rxr and Rar signaling pathways in heart and eye morphogenesis. Cell. 1994;78:987–1003.

    Article  CAS  PubMed  Google Scholar 

  96. Kreidberg JA, Sariola H, et al. Wt-1 is required for early kidney development. Cell. 1993;74:679–91.

    Article  CAS  PubMed  Google Scholar 

  97. Kwee L, Baldwin HS, et al. Defective development of the embryonic and Extraembryonic circulatory systems in vascular cell adhesion molecule (Vcam-1) deficient mice. Development. 1995;121:489–503.

    Article  CAS  PubMed  Google Scholar 

  98. Manner J. Experimental study on the formation of the Epicardium in Chick embryos. Anat Embryol (Berl). 1993;187:281–9.

    Article  CAS  Google Scholar 

  99. Kalman F, Viragh S, et al. Cell surface Glycoconjugates and the extracellular matrix of the develo** mouse embryo Epicardium. Anat Embryol (Berl). 1995;191:451–64.

    Article  CAS  Google Scholar 

  100. Dettman RW, Denetclaw W Jr, et al. Common Epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and Intermyocardial fibroblasts in the avian heart. Dev Biol. 1998;193:169–81.

    Article  CAS  PubMed  Google Scholar 

  101. Perez-Pomares JM, Macias D, et al. The origin of the Subepicardial mesenchyme in the avian embryo: an Immunohistochemical and quail-Chick chimera study. Dev Biol. 1998;200:57–68.

    Article  CAS  PubMed  Google Scholar 

  102. Norman S, Riley PR. Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease. Clin Anat. 2016;29:305–15.

    Article  PubMed  Google Scholar 

  103. Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the Epicardial organ. Dev Biol. 1996;174:221–32.

    Article  CAS  PubMed  Google Scholar 

  104. Perez-Pomares JM, Phelps A, et al. Experimental studies on the spatiotemporal expression of Wt1 and Raldh2 in the embryonic avian heart: a model for the regulation of myocardial and Valvuloseptal development by Epicardially derived cells (Epdcs). Dev Biol. 2002;247:307–26.

    Article  CAS  PubMed  Google Scholar 

  105. Red-Horse K, Ueno H, et al. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu B, Zhang Z, et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-Endocardial Vegf signaling. Cell. 2012;151:1083–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tian X, Pu WT, et al. Cellular origin and developmental program of coronary angiogenesis. Circ Res. 2015;116:515–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang Y, Wu B, et al. Uncontrolled Angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nat Commun. 2017;8:578.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dodge-Khatami A, Mavroudis C, et al. Congenital heart surgery nomenclature and database project: anomalies of the coronary arteries. Ann Thorac Surg. 2000;69:S270–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo del Monte-Nieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Monte-Nieto, G., Harvey, R.P. (2021). Embryology of the Heart. In: Salavastru, C., Murrell, D.F., Otton, J. (eds) Skin and the Heart. Springer, Cham. https://doi.org/10.1007/978-3-030-54779-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54779-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54778-3

  • Online ISBN: 978-3-030-54779-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation