Introduction: Consequences of Global Warming to Planetary and Human Health

  • Chapter
  • First Online:
Climate Change and Global Public Health

Part of the book series: Respiratory Medicine ((RM))

Abstract

Global warming occurs from anthropogenic fossil-fuel burning, increasing greenhouse gases and causing Earth’s mean surface temperature to rise. The consequences of climate change are now becoming readily apparent: scorching heat waves and extremely hot days, more severe weather events, including hurricanes, storms, floods, and regional deluges or extreme drought, resulting food insecurity, subsequent migrations of people from failing farms, air pollution (especially in Asian cities), coral reef bleaching and mortality, and fishery losses. The global policy response has gathered around the 2015 Paris Climate Agreement with its voluntary Nationally Determined Contributions to reduce CO2 emissions, eliminate hydrofluorocarbons, protect forests, and improve transparency and commitments to ameliorate climate change. Despite opposition by the fossil fuel industry, renewable energies of wind turbines, photovoltaic and concentrated solar plants, and lithium storage batteries have emerged as potent sources of electricity and clean transport. The United Nations’ Intergovernmental Panel on Climate Change (IPCC) has identified the next 12 years as the critical period to begin to halve and then reach zero carbon pollution to stay within 1.5 °C warming and avoid unacceptable severe expense and loss of health and life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IPCC. In: Core Writing Team, Pachauri RK, Meyer LA, editors. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014. 151 pp.

    Google Scholar 

  2. IPCC. Summary for policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T, editors. Geneva: World Meteorological Organization; 2018. 32 pp.

    Google Scholar 

  3. Fourth National Climate Assessment, U.S. Global Change Research Program, Vol I: Climate Science Special Report and Vol II: Impacts, Risks, and Adaptation in the United States, Washington, D.C. 2018.

    Google Scholar 

  4. Watts N, Adger WN, Agnolucci P, et al. Health and climate change: policy responses to protect public health. Lancet. 2015; published online June 23; https://doi.org/10.1016/S0140-6736(15)60854-62.

  5. Watts N, Amann M, Arnell N, et al. The 2018 report of the Lancet Countdown on health and climate change: sha** the health of nations for centuries to come. Lancet. 2018; https://doi.org/10.1016/S0140-6736(18)32594-7.

  6. Keeling CD. Climate change and carbon dioxide: an introduction. Proc Natl Acad Sci USA. 1997;94:8273–4. https://doi.org/10.1073/pnas.94.16.8273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hansen J, Sato M, Ruedy R, et al. Dangerous human-made interference with climate: a GISS model E study. Atmos Chem Phys. 2007;7:2287–312.

    Article  CAS  Google Scholar 

  8. Lenton TM, Held H, Kriegler E, et al. Tip** elements in the Earth’s climate system. Proc Natl Acad Sci. 2008;105:1786–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature. 2008;453:379–82.

    Article  PubMed  CAS  Google Scholar 

  10. Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, et al. Earth’s energy imbalance: confirmation and implications. Science. 2005;308:1431–5.

    Article  CAS  PubMed  Google Scholar 

  11. Montzka SA, Dlugokencky EJ, Butler JH. Non-CO2 greenhouse gases and climate change. Nature. 2011;476:43–50.

    Article  CAS  PubMed  Google Scholar 

  12. Swindles GT, Morris PJ, Mullan D, et al. The long-term fate of permafrost peatlands under rapid climate warming. Sci Rep. 2015;5:17951. https://doi.org/10.1038/srep17951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oppenheimer M, O’Neill BC, Webster M, Agrawala S. The limits of consensus. Science. 2007;317:1505–6.

    Article  CAS  PubMed  Google Scholar 

  14. Hansen J, Sato M. Greenhouse gas growth rates. Proc Natl Acad Sci. 2004;101:16109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Velders GJM, Andersen SO, Daniel JS, Fahey DW, McFarland M. The importance of the Montreal protocol in protecting climate. Proc Natl Acad Sci U S A. 2007;104:4814–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci U S A. 2004;101:423–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ramanathan V, Feng Y. On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc Natl Acad Sci U S A. 2008;105:14245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Notz D, Stroeve J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science. 2016:aag2345. https://doi.org/10.1126/science.aag2345.

  19. Jorgenson MT, Romanovsky V, Harden J, et al. Resilience and vulnerability of permafrost to climate change. Can J For Res. 2010;40:1219–36.

    Article  Google Scholar 

  20. Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT. Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature. 2009;457:459–62.

    Article  CAS  PubMed  Google Scholar 

  21. Witze A. Crucial West Antarctic glaciers are retreating unstoppably. Nature. 2014; https://doi.org/10.1038/nature.2014.15202.

  22. Joughin I, Smith BE, Medley B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science. 2014;344:735–8. https://doi.org/10.1126/science.1249055.

    Article  CAS  PubMed  Google Scholar 

  23. Jenouvrier S, Caswell H, Barbraud C, et al. Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proc Natl Acad Sci. 2009;106:1844–7. https://doi.org/10.1073/pnas.0806638106.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rom W, Hartling N. Rafting the Alsek. North America’s wildest river. Explorers J. 2017;95(3) Fall:34–43.

    Google Scholar 

  25. Carpenter KE, Abrar M, Aeby G, et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science. 2008;321:560–3.

    Article  CAS  PubMed  Google Scholar 

  26. Hughes TP, Kerry JT, Baird AH, et al. Global warming transforms coral reef assemblages. Nature. 2018;556:492–6. https://doi.org/10.1038/s41586-018-0041-2.

    Article  CAS  PubMed  Google Scholar 

  27. Hughes TP, Kerry JT, Connolly SR, et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat Clim Chang. 2018; https://doi.org/10.1038/s41588-018-0351-2.

  28. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci. 2008;105:17442–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, et al. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318:1737–42.

    Article  CAS  PubMed  Google Scholar 

  30. Urban MC. Accelerating extinction risk from climate change. Science. 2015;348:571–3. https://doi.org/10.1126/science.aaa4984.

    Article  CAS  PubMed  Google Scholar 

  31. Warren R, Price J, Graham E, Forstenhaeusler N, Van Der Wal J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science. 2018;360:791–5. https://doi.org/10.1126/science.aar3646.

    Article  CAS  PubMed  Google Scholar 

  32. Frumkin H, Hess J, Luber G, Malilay J, McGeehin M. Climate change: the public health response. Am J Public Health. 2008;98:435–45.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rom WN, Pinkerton KE, Martin WJ, Forastiere F. Global warming: a challenge to all American Thoracic Society members. Am J Respir Crit Care Med. 2008;177:1053–7.

    Article  PubMed  Google Scholar 

  34. How much hotter is your hometown than when you were born? New York Times, 30 Aug 2018. https://www.nytimes.com/interactive/.../climate/how-much-hotter-is-your-hometown.htm... (Accessed 17 Dec 2018).

  35. Mora C, Dousset B, Caldwell IR, et al. Global risk of deadly heat. Nat Clim Chang. 2017; https://doi.org/10.1038/NCLIMATE3322.

  36. Coffel ED, Horton RM, Sherbinin AD. Temperature and humidity projections of a rapid rise in global heat stress exposure during the 21st century. Environ Res Lett. 2018;13:014001. https://doi.org/10.1088/1748-9326/aaa00e.

    Article  PubMed  Google Scholar 

  37. Fouillet A, Rey G, Laurent F, et al. Excess mortality related to the august 2003 heat wave in France. Int Arch Occup Environ Health. 2006;80:16–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Argaud L, Ferry T, Le Q-H, et al. Short- and long-term outcomes of heatstroke following the 2003 heat wave in Lyon, France. Arch Intern Med. 2007;167:2177–83.

    Article  PubMed  Google Scholar 

  39. Dhainaut JF, Claessens Y-E, Ginsberg C, Riou B. Unprecedented heat-related deaths during the 2003 heat wave in Paris: consequences on emergency departments. Crit Care. 2004;8:1–2.

    Article  PubMed  Google Scholar 

  40. Stafoggia M, Forastiere F, Berti G, et al. Factors associated with heat-related in-hospital mortality: a multicity case-crossover analysis. Epidemiology. 2006;17:S163–4.

    Article  Google Scholar 

  41. Michelozzi P, Accetta G, De Sarlo M, et al. High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities. Am J Respir Crit Care Med. 2009;179:383–9.

    Article  PubMed  Google Scholar 

  42. D’Ippoliti D, Michelozzi P, Marino C, et al. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ Health. 2010;9:37.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Filleul L, Cassadou S, Medina S, et al. The relation between temperature, ozone and mortality in nine French cities during the heat wave of 2003. Environ Health Perspect. 2006;114:1344–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ren C, Williams GM, Morawska L, Mengersen K, Tong S. Ozone modifies associations between temperature and cardiovascular mortality: analysis of the NMMAPS data. Occup Environ Med. 2008;65:255–60.

    Article  CAS  PubMed  Google Scholar 

  45. Schwartz J, Samet JM, Patz JA. Hospital admissions for heart disease: the effects of temperature and humidity. Epidemiology. 2004;15:755–61.

    Article  PubMed  Google Scholar 

  46. Medina-Ramon M, Zanobetti A, Cavanagh DP, Schwartz J. Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. Environ Health Perspect. 2006;114:1331–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qian Z, He Q, Lin HM, et al. High temperatures enhanced actue mortality effects of ambient particle pollution in the “oven” city of Wuhan, China. Environ Health Perspect. 2008;116:1172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hansen A, Bi P, Nitschke M, Ryan P, Pisaniello D, Tucker G. The effect of heat waves on mental health in a temperate Australian City. Environ Health Perspect. 2008;116:1369–75.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Greene S, Kalkstein LS, Mills DM, Samenow J. An examination of climate change on extreme heat events and climate-change mortality relationships in large U.S. cities. Weather. Climate Soc. 2011;3:281–91.

    Article  Google Scholar 

  50. Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD. Summer temperature variability and long-term survival among elderly people with chronic disease. Proc Natl Acad Sci. 2012;109:6608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cecchi L, D’Amato G, Ayres JG, et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy. 2010;65:1073–81.

    CAS  PubMed  Google Scholar 

  52. D'Amato G, Cecchi L. Effects of climate change on environmental factors in respiratory allergic diseases. Clin Exp Allergy. 2008;38:1264–74.

    Article  CAS  PubMed  Google Scholar 

  53. Wayne P, Forster S, Connelly J, Bazzaz FA, Epstein PR. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia) is increased in CO2 enriched atmospheres. Ann Allergy Asthma Immunol. 2002;88:279–82.

    Article  PubMed  Google Scholar 

  54. Singer BD, Ziska LH, Frenz DA, Gebhard DE, Straka JG. Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Funct Plant Biol. 2005;32:667–70.

    Article  CAS  PubMed  Google Scholar 

  55. Beggs PJ, Bambrick HJ. Is the global rise of asthma an early impact of anthropogenic climate change? Environ Health Perspect. 2005;113:915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Haines A, Patz JA. Health effects of climate change. JAMA. 2004;291:99–103.

    Article  CAS  PubMed  Google Scholar 

  57. Patz JA, Olson SH. Malaria risk and temperature: influences from global climate change and local land use practices. Proc Natl Acad Sci. 2006;103:5635–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M. Malaria resurgence in the east African highlands: temperature trends revisited. Proc Natl Acad Sci U S A. 2006;103:5829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc R Soc B. 2010:1–9. https://doi.org/10.1098/rspb.2010.

  60. Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 2002;360:830–4.

    Article  PubMed  Google Scholar 

  61. Costello A, Abbas M, Allen A, et al. Managing the health effects of climate change. Lancet. 2009;373:1693–733.

    Article  PubMed  Google Scholar 

  62. Herring SC, et al. Explaining Extreme Events of 2017 from a Climate Perspective. 7th ed. Boston: Bulletin of the American Meterological Society; 2018.

    Google Scholar 

  63. Morgan G, Sheppeard V, Khalaj B, et al. Effects of bushfire smoke on daily mortality and hospital admissions in Sydney. Aust Epidemiol. 2010;21(1):47–55.

    Article  Google Scholar 

  64. Johnston F, Hanigan I, Henderson S, et al. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ Res. 2011;111(6):811–6.

    Article  CAS  PubMed  Google Scholar 

  65. Wettstein ZS, Hoshiko S, Harrison RJ, et al. Cardiovascular and cerebrovascular emergency department visits associated with wildfire smoke exposure in California in 2015. J Am Heart Assoc. 2018;7:7e007492.

    Article  Google Scholar 

  66. Hatfield JL, Prueger JH. Temperature extremes: effect on plant growth and development. Weather Climate Extremes. 2015;104:4–10.

    Article  Google Scholar 

  67. Zhu C, Kobayashi K, Loladze I, et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv. 2018;4:eaaq1012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Deutsch CA, Tewksbury JJ, Tigchelaar M, et al. Increase in crop losses to insect pests in a warming climate. Science. 2018;361:916–9. https://doi.org/10.1126/science.aat3466.

    Article  CAS  PubMed  Google Scholar 

  69. Obradovich N, Migliorini R, Paulus MP, et al. Empirical evidence of mental health risks posed by climate change. Proc Natl Acad Sci USA. 2018;115:10953–8. https://doi.org/10.1073/pnas.1801528115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rom WN, Evans L, Uppal A. The sentinel event of climate change. Hurricane Sandy and its consequences for pulmonary and critical care medicine. Am J Respir Crit Care Med. 2013;187: iii–iv https://doi.org/10.1164/rccm.201212-2207OE.

  71. Kishore N, Marques D, Mahmud A, et al. Mortality in Puerto Rico after Hurricane Maria. N Engl J Med. 2018;379:162–70. https://doi.org/10.1056/NEJMsa1803972.

    Article  PubMed  Google Scholar 

  72. Lehmann J, Mempel F, Coumou D. Increased occurrence of record-wet and record-dry months reflect changes in mean rainfall. Geophys Res Lett. 2018; https://doi.org/10.1029/2018GL079439.

  73. Sarhadi A, Ausin MC, Wiper MC, et al. Multidimensional risk in a non-stationary climate: joint probability of increasing severe warm and dry conditions. Sci Adv. 2018;4:eaau3487.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Anderegg WR, Prall JW, Harold J, Schneider SH. Expert credibility in climate change. Proc Natl Acad Sci USA. 2010;107:12107–9. https://doi.org/10.1073/pnas.1003187107.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ricke K, Drouet L, Caldeira K, Tavoni M. Country-level social cost of carbon. Nat Clim Chang. 2018; https://doi.org/10.1038/s41558-018-0282-y.

  76. Rom WN. Estimated global mortality from present to 2100 from climate change. Int J Humanit Soc Sci Rev. 2018;4:1–8.

    Google Scholar 

  77. Shindell D, Faluveg G, Shindell C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat Clim Chang. 2018;8:291–5. https://doi.org/10.1038/s41558-018-0108-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cutler D, Dominici F. A breath of bad air: cost of the trump environmental agenda may lead to 80000 extra deaths per decade. JAMA. 2018;319:2261–2. https://doi.org/10.1001/jama.2018.7351.

    Article  PubMed  Google Scholar 

  79. Pacala S, Socolow R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science. 2004;305:968–72.

    Article  CAS  PubMed  Google Scholar 

  80. MacDonald AE, Clack CTM, Alexander A, Dunbar A, Wilzak J, **e Y. Future cost-competitive electricity systems and their impact on US CO2 emissions. Nat Clim Chang. 2016; https://doi.org/10.1038/NCLIMATE2921.

  81. McGlade C, Ekins P. The geographical distribution of fossil fuels unused when limiting global warming to 2°C. Nature. 2015;517:187–90. https://doi.org/10.1038/nature14016.

    Article  CAS  PubMed  Google Scholar 

  82. Rooney RC, Bayley SE, Schindler DW. Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proc Natl Acad Sci U S A. 2012;109:4933–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hansen J, Kharecha P, Sato M, et al. Assessing “dangerous climate change”: required reduction of carbon emissions to protect young people, future generations and nature. PLoS One. 2013;8(12):e81648.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yale Data-Driven Environmental Solutions Group. Who’s acting on climate change? Subnational and non-state global climate action. (Yale Data Driven 2017).

    Google Scholar 

  85. Bronselaer B, Winton M, Griffies SM, et al. Change in future climate due to Antarctic melt water. Nature. 2018;564:53–8. https://doi.org/10.1038/s41488-018-0712-z.

    Article  CAS  PubMed  Google Scholar 

  86. Schellnhuber HJ, Rahmstorf S, Winkelmann R. Why the right climate target was agreed in Paris. Nat Clim Chang. 2016;6:649–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William N. Rom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rom, W.N., Pinkerton, K.E. (2021). Introduction: Consequences of Global Warming to Planetary and Human Health. In: Pinkerton, K.E., Rom, W.N. (eds) Climate Change and Global Public Health. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-54746-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54746-2_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-54745-5

  • Online ISBN: 978-3-030-54746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation