Stochastic and Risk Averse Maximum Subgraph Problems

  • Living reference work entry
  • First Online:
Encyclopedia of Optimization

Abstract

This chapter summarizes recent advances in identifying subgraphs with given properties on stochastic graphs, which generalize the classical maximum subgraph problems such as the maximum clique problem. When the vertices of a graph have stochastic weights, a risk-averse stochastic optimization approach is described that allows one to find a subgraph with the lowest risk that also satisfies a prescribed graph-theoretic property. Similarly to deterministic maximum weight subgraphs problems, the minimum-risk subgraph is found among minimal subgraphs, i.e., such subgraphs whose order cannot be increased without breaking the desired property. In the case when the graph’s edges are stochastic, a two-stage stochastic programming approach is described for constructing or detecting “resilient” or “repairable” structures, or such sets of vertices that (i) induce a subgraph of a given property, and (ii) upon a randomized change of graph’s topology can be “repaired” via addition and/or deletion of vertices so as to restore the desired property, and whose cardinality is maximized. Exact combinatorial (graph-based) branch-and-bound algorithms for both types of models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseev VE, Korobitsyn D (1992) Complexity of some problems on hereditary classes of graphs. Diskretnaya Matematika 4(4):34–40

    MathSciNet  MATH  Google Scholar 

  2. Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Financ 9(3):203–228

    Article  MathSciNet  MATH  Google Scholar 

  3. Babel L (1994) A fast algorithm for the maximum weight clique problem. Computing 52(1):31–38

    Article  MathSciNet  MATH  Google Scholar 

  4. Balas E, Xue J (1991) Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM J Comput 20(2):209–221

    Article  MathSciNet  MATH  Google Scholar 

  5. Bandelt HJ, Mulder HM (1986) Distance-hereditary graphs. J Comb Theory Series B 41(2):182–208. http://dx.doi.org/10.1016/0095-8956(86)90043-2, http://www.sciencedirect.com/science/article/pii/009 5895686900432

  6. Bernoulli D (2011) Exposition of a new theory on the measurement of risk. In: The Kelly capital growth investment criterion: theory and practice. World Scientific, Singapore, pp 11–24

    Chapter  Google Scholar 

  7. Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, New York

    MATH  Google Scholar 

  8. Bollobás B (1998) Random graphs. In: Modern graph theory. Graduate texts in mathematics, vol 184. Springer, New York, pp 215–252

    Google Scholar 

  9. Bollobás B, Erdős P (1976) Cliques in random graphs. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol 80, pp 419–427

    Google Scholar 

  10. Dashti H, Krokhmal PA (2017) A model for optimal reinforcement of error-and attack-resilient clusters in networks under uncertainty. In: Optimization methods and applications. Springer, New York, pp 97–117

    Chapter  MATH  Google Scholar 

  11. Du B, Zhou H, Leus R (2020) A two-stage robust model for a reliable p-center facility location problem. Appl Math Model 77:99–114

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60

    Google Scholar 

  13. Jiang H, Li CM, Manya F (2017) An exact algorithm for the maximum weight clique problem in large graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 31

    Google Scholar 

  14. Krokhmal PA (2007) Higher moment coherent risk measures. Quant Financ 7(4):373–387

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumlander D (2008) On importance of a special sorting in the maximum-weight clique algorithm based on colour classes. In: International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences. Springer, Berlin, pp 165–174

    MATH  Google Scholar 

  16. Li RH, Dai Q, Wang G, Ming Z, Qin L, Yu JX (2019) Improved algorithms for maximal clique search in uncertain networks. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, Macao, China, pp 1178–1189

    Chapter  Google Scholar 

  17. Matthews LR, Gounaris CE, Kevrekidis IG (2019) Designing networks with resiliency to edge failures using two-stage robust optimization. Eur J Oper Res 279(3):704–720

    Article  MathSciNet  MATH  Google Scholar 

  18. Miao Z, Balasundaram B, Pasiliao EL (2014) An exact algorithm for the maximum probabilistic clique problem. J Comb Optim 28(1):105–120

    Article  MathSciNet  MATH  Google Scholar 

  19. Östergård PR (2001) A new algorithm for the maximum-weight clique problem. Nordic J Comput 8(4):424–436

    MathSciNet  MATH  Google Scholar 

  20. Pardalos PM, Xue J (1994) The maximum clique problem. J Glob Optim 4:301–328

    Article  MathSciNet  MATH  Google Scholar 

  21. Prékopa A (1995) Stochastic programming. Kluwer Academic Publishers, Berlin

    Book  MATH  Google Scholar 

  22. Rysz M, Mehta S (2018) A two-stage stochastic optimization approach for detecting structurally stable clusters in randomly changing graphs. IEEE Trans Netw Sci Eng 6(4):671–683

    Article  MathSciNet  Google Scholar 

  23. Rysz M, Mirghorbani M, Krokhmal P, Pasiliao EL (2014) On risk-averse maximum weighted subgraph problems. J Comb Optim 28(1):167–185

    Article  MathSciNet  MATH  Google Scholar 

  24. Rysz M, Krokhmal PA, Pasiliao EL (2017) Detecting resilient structures in stochastic networks: a two-stage stochastic optimization approach. Networks 69(2):189–204

    Article  MathSciNet  MATH  Google Scholar 

  25. Rysz M, Pajouh FM, Krokhmal P, Pasiliao EL (2018) Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights. Ann Oper Res 262(1):89–108

    Article  MathSciNet  MATH  Google Scholar 

  26. Shimizu S, Yamaguchi K, Masuda S (2020) A maximum edge-weight clique extraction algorithm based on branch-and-bound. Discret Optim 37:100583

    Article  MathSciNet  MATH  Google Scholar 

  27. Shishebori D, Babadi AY (2015) Robust and reliable medical services network design under uncertain environment and system disruptions. Transp Res E: Logist Transp Rev 77:268–288

    Article  Google Scholar 

  28. Vinel A, Krokhmal P (2014) Polyhedral approximations in p-order cone programming. Optim Methods Softw 29(6):1210–1237

    Article  MathSciNet  MATH  Google Scholar 

  29. Vinel A, Krokhmal P (2017) Mixed integer programming with a class of nonlinear convex constraints. Discret Optim 24:66–86

    Article  MathSciNet  MATH  Google Scholar 

  30. Yannakakis M (1978) Node-and edge-deletion np-complete problems. In: STOC’78: Proceedings of the 10th Annual ACM Symposium on Theory of Computing. ACM Press, New York, pp 253–264

    Google Scholar 

  31. Yezerska O, Butenko S, Boginski VL (2018) Detecting robust cliques in graphs subject to uncertain edge failures. Ann Oper Res 262(1):109–132

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang B, Peng J, Li S (2021) Minimax models for capacitated p-center problem in uncertain environment. Fuzzy Optim Dec Making 20:273–292

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Krokhmal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Eshghali, M., Rysz, M., Krokhmal, P. (2023). Stochastic and Risk Averse Maximum Subgraph Problems. In: Pardalos, P.M., Prokopyev, O.A. (eds) Encyclopedia of Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-54621-2_720-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54621-2_720-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54621-2

  • Online ISBN: 978-3-030-54621-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation