Seeing is Believing: Quantum Dot Visualization Provides New Insights into Indoleamine Signalling Networks

  • Chapter
  • First Online:
Neurotransmitters in Plant Signaling and Communication

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 589 Accesses

Abstract

Plants have evolved complex and sensitive signalling networks to perceive their environment and rapidly and dynamically respond. Plant signalling molecules, including plant neurotransmitters, control every aspect of a plant’s life; however, despite an increasing wealth of knowledge on their roles, functions and mechanisms, it has not been possible to visualize these molecules in living tissues. Determination of the localization of plant neurotransmitters within cells and tissues can enhance our understanding of the functions and mechanisms of these compounds. Quantum dots are UV and fluorescence active nanoparticles which through relatively simple chemical conjugation can be attached to diverse biologically active molecules for fluorescence imaging. They can be used for single molecule or tissue-specific tracking, and conjugation offers one possible means by which direct visualization of these molecules can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Salim N, Barraclough E, Burgess E, Clothier B, Deurer M, Green S et al (2011) Quantum dot transport in soil, plants, and insects. Sci Total Environ 409:3237–3248

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019a) Melatonin: A new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019b) Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res 2:152–168

    Google Scholar 

  • Bailey DM, Catron MA, Kovtun O et al (2018) Single quantum dot tracking reveals serotonin transporter diffusion dynamics are correlated with cholesterol-sensitive threonine 276 phosphorylation status in primary midbrain neurons. ACS Chem Neurosci 9:2534–2541

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee H-J, Lee HY, Back K (2016) Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. J Pineal Res 60:65–73

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K et al (2013) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114

    Article  PubMed  CAS  Google Scholar 

  • Chang JC, Tomlinson ID, Warnement MR et al (2012) Single molecule analysis of serotonin transporter regulation using antagonist-conjugated quantum dots reveals restricted, p38 MAPK-dependent mobilization underlying uptake activation. J Neurosci 32:8919–8929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, **e Y, Gu Q et al (2017) The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis. Free Radic Biol Med 108:465–477

    Article  CAS  PubMed  Google Scholar 

  • Clarke SJ, Hollmann CA, Zhang Z et al (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5:409–417

    Article  CAS  PubMed  Google Scholar 

  • Dahan M, Lévi S, Luccardini C et al (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Google Scholar 

  • Das S, Wolfson BP, Tetard L et al (2015) Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci Nano 2:203–212

    Article  CAS  Google Scholar 

  • Enders TA, Strader LC (2015) Auxin activity: Past, present, and future. Am J Bot 102:180–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erland LAE, Murch SJ, Reiter RJ, Saxena PK (2015) A new balancing act: The many roles of melatonin and serotonin in plant growth and development. Plant Signal Behav 10:e1096469–e1096515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erland LAE, Turi CE, Saxena PK (2016) Serotonin: An ancient molecule and an important regulator of plant processes. Biotechnol Adv 8:1347–1361

    Article  CAS  Google Scholar 

  • Erland LAE, Saxena P (2019) Auxin driven indoleamine biosynthesis and the role of tryptophan as an inductive signal in Hypericum perforatum (L.). PLoS ONE 14:e0223878-e223922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erland LAE, Shukla MR, Singh AS et al (2019a) Melatonin and serotonin: mediators in the symphony of plant morphogenesis. J Pineal Res 64:e12452

    Article  CAS  Google Scholar 

  • Erland LAE, Yasunaga A, Li ITS et al (2019b) Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. J Pineal Res 66:e12527. https://doi.org/10.1111/jpi.12527

    Article  CAS  PubMed  Google Scholar 

  • Fichman Y, Miller G, Mittler R (2019) Whole-plant live imaging of reactive oxygen species. Molecular Plant 12:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Gao YH, Yu Y, Hu XG et al (2013) Imaging of jasmonic acid binding sites in tissue. Anal Biochem 440:205–211

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Yan Y, Wen D, Shi Q (2017) Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiol Plant

    Google Scholar 

  • Goryacheva IY, Speranskaya ES, Goftman VV et al (2015) Synthesis and bioanalytical applications of nanostructures multiloaded with quantum dots. Trends Anal Chem 66:53–62

    Article  CAS  Google Scholar 

  • Hasegawa J, Sakamoto Y, Nakagami S et al (2016) Three-dimensional imaging of plant organs using a simple and rapid transparency technique. Plant Cell Physiol 57:462–472. https://doi.org/10.1093/pcp/pcw027

    Article  CAS  PubMed  Google Scholar 

  • Kirchhelle C, Moore I (2017) A simple chamber for long-term confocal imaging of root and hypocotyl development. JoVE 1–9

    Google Scholar 

  • Koo Y, Wang J, Zhang Q et al (2014) Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol 49:626–632

    Article  PubMed  CAS  Google Scholar 

  • Lane LA, Smith AM, Lian T, Nie S (2014) Compact and blinking-suppressed quantum dots for single-particle tracking in live cells. J Phys Chem B 118:14140–14147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Back K (2017) Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res 62:e12379

    Article  CAS  Google Scholar 

  • Ma L, Wu S-M, Huang J, Ding Y, Pang D-W, Li L (2008) Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates. Chromosoma 117:181–187

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Pagano L, Wohlschlegel JA et al (2019) Proteomic, gene and metabolite characterization reveal the uptake and toxicity mechanisms of cadmium sulfide quantum dots in soybean plants. Environ Sci Nano 6:3010–3026

    Article  CAS  Google Scholar 

  • Marmiroli M, Mussi F, Pagano L et al (2020) Cadmium sulfide quantum dots impact Arabidopsis thaliana physiology and morphology. Chemosphere 240:124856

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  • Mgcina LS, Dubery IA, Piater LA (2015) Comparative conventional- and quantum dot-labeling strategies for LPS binding site detection in Arabidopsis thaliana mesophyll protoplasts. Front Plant Sci 6:335

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S (2018) Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiol Biochem 132:33–45

    Article  CAS  PubMed  Google Scholar 

  • Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazardous Mat 211–212:427–435

    Article  CAS  Google Scholar 

  • Nedosekin DA, Khodakovskaya MV, Biris AS et al (2011) In vivo plant flow cytometry: a first proof-of-concept. Cytometry 79A:855–865

    Article  Google Scholar 

  • Ramakrishna A, Giridhar P, Jobin M et al (2011) Indoleamines and calcium enhance somatic embryogenesis in Coffea canephora P ex Fr. Plant Cell Tiss Organ Cult 108:267–278

    Article  CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Ravishankar GA (2009) Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L. Plant Signal Behav 4:1136–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Y, Halat LS, Khan D et al (2018) The microtubule-associated protein CLASP sustains cell proliferation through a brassinosteroid signaling negative feedback loop. Curr Biol 28:2718-2729.e5

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng C, Zheng X et al (2017) Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J Pineal Res 63:e12429

    Article  CAS  Google Scholar 

  • Wang Q, Chen B, Liu P et al (2009) Calmodulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration. J Biol Chem 284:12000–12007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeda S, Zhang N, Zhao X et al (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9:e93462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Li D-X, Zhang J-R et al (2018) Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 33:e12500

    Article  CAS  Google Scholar 

  • Whiteside MD, Digman MA, Gratton E, Treseder KK (2012a) Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem. 55:7–13

    Article  CAS  Google Scholar 

  • Whiteside MD, Garcia MO, Treseder KK (2012b) Amino acid uptake in arbuscular mycorrhizal plants. PLoS ONE 7:e47643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteside MD, Treseder KK, Atsatt PR (2009) The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90:100–108

    Article  PubMed  Google Scholar 

  • Xu W, Cai S-Y, Zhang Y et al (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61:457–469

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Liang J, He Z, Sun M (2006) Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem Biol 13:723–731

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhang H-J, Sun Q-Q et al (2017) Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Sci Rep 7:503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J Hazard Mater 225–226:131–138

    Google Scholar 

  • Zheng X, Tan DX, Allan AC et al (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7:41236–41312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren A. E. Erland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erland, L.A.E. (2020). Seeing is Believing: Quantum Dot Visualization Provides New Insights into Indoleamine Signalling Networks. In: Baluška, F., Mukherjee, S., Ramakrishna, A. (eds) Neurotransmitters in Plant Signaling and Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-54478-2_1

Download citation

Publish with us

Policies and ethics

Navigation