Part of the book series: Dynamic Modeling and Econometrics in Economics and Finance ((DMEF,volume 27))

  • 819 Accesses

Abstract

The Pareto model is very popular in risk management, since simple analytical formulas can be derived for financial downside risk measures (value-at-risk, expected shortfall) or reinsurance premiums and related quantities (large claim index, return period). Nevertheless, in practice, distributions are (strictly) Pareto only in the tails, above (possible very) large threshold. Therefore, it could be interesting to take into account second-order behavior to provide a better fit. In this article, we present how to go from a strict Pareto model to Pareto-type distributions. We discuss inference, derive formulas for various measures and indices, and finally provide applications on insurance losses and financial risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Gabaix (2009) claimed that similar results can be obtained when exponents are different, unfortunately, this yields only asymptotic power tails, which will be discussed in this chapter.

  2. 2.

    \(\overline{F}_{u'}\) is a truncated Pareto distribution, with density equals to \(f(x)/(1-F(u'))\). This property can be observed directly using Eq. (8), where both \(\alpha \) and \(\lambda \) remain unchanged.

    Note that this property is quite intuitive, since the GPD distribution appears as a limit for exceeding distributions, and limit in asymptotic results are always fixed points: the Gaussian family is stable by addition (and appears in the Central Limit Theorem) while Fréchet distribution is max-stable (and appears in the first theorem in extreme value theory).

  3. 3.

    Historically, extremes were studied through block-maximum—yearly maximum, or maximum of a subgroup of observations. Following Fisher and Tippett (1928), up to some affine transformation, the limiting distribution of the maximum over n i.i.d observations is either Weibull (observations with a bounded support), Gumbel (infinite support, but light tails, like the exponential distribution) or Fréchet (unbounded, with heavy tails, like Pareto distribution). Pickands (1975) and Balkema and de Haan (1974) obtained further that not only the only possible limiting conditional excess distribution is GPD, but also that the distribution of the maximum on subsamples (of same size) should be Fréchet distributed, with the same tail index \(\gamma \), if \(\gamma >0\). For instance in the USA, if the distribution of maximum income per county is Fréchet with parameter \(\gamma \) (and if county had identical sizes), then the conditional excess distribution function of incomes above a high threshold is a GPD distribution with the same tail index \(\gamma \).

  4. 4.

    The quantile function U is defined as \(U(x)=F^{-1}(1-1/x)\).

  5. 5.

    Using the expansion \((1+y^a)^b \approx 1+b y^a\), for small \(y^a\), in (22) yields (20).

  6. 6.

    Albrecher et al. (2017, Sect. 4.6) give an approximation, based on \((1+\delta -\delta y^\tau )^{-\alpha }\approx 1-\alpha \delta +\alpha \delta y^\tau \), which can be very poor. Thus, we do not recommend to use it.

  7. 7.

    Even if Hill estimator can be can be seen as a Maximum Likehood estimator, for some properly chosen distribution.

  8. 8.

    Given a sample \(\lbrace x_1,\ldots ,x_n \rbrace \), let \(\lbrace x_{1:n},\ldots ,x_{n:n} \rbrace \) denote the ordered version, with \(x_{1:n}=\min \lbrace x_1,\ldots ,x_n\rbrace \), \(x_{n:n}=\max \lbrace x_1,\ldots ,x_n\rbrace \) and \(x_{1:n}\le \ldots x_{n-1:n}\le x_{n:n} \).

  9. 9.

    The study of the limiting distribution of the maximum of a sample of size n made us introduce a normalizing sequence \(a_n\). Here, a continuous version is considered—with U(t) instead of U(n)—and the sequence \(a_n\) becomes the auxiliary function a(t).

  10. 10.

    See the R packages ReIns or TopIncomes.

  11. 11.

    It is the danishuni dataset in the CASdatasets package, available from http://cas.uqam.ca/.

  12. 12.

    Available from https://www.nasdaq.com/market-activity/commodities/bz%3Anmx.

References

  • Albrecher, H., Beirlant, J., & Teugels, J. L. (2017). Reinsurance: Actuarial and statistical aspects. Wiley series in probability and statistics.

    Google Scholar 

  • Arnold, B. C. (2008). Pareto and generalized Pareto distributions. In D. Chotikapanich (Ed.), Modeling income distributions and Lorenz curves (Chap. 7, pp. 119–146). New York: Springer.

    Google Scholar 

  • Balkema, A., & de Haan, L. (1974). Residual life time at great age. Annals of Probability, 2, 792–804.

    Article  Google Scholar 

  • Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: Theory and applications. Wiley series in probability and statistics.

    Google Scholar 

  • Beirlant, J., Joossens, E., & Segers, J. (2009). Second-order refined peaks-over-threshold modelling for heavy-tailed distributions. Journal of Statistical Planning and Inference, 139, 2800–2815.

    Article  Google Scholar 

  • Beirlant, J., & Teugels, J. L. (1992). Modeling large claims in non-life insurance. Insurance: Mathematics and Economics, 11(1), 17–29.

    Google Scholar 

  • Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Encyclopedia of mathematics and its applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cebrián, A. C., Denuit, M., & Lambert, P. (2003). Generalized Pareto fit to the society of actuaries’ large claims database. North American Actuarial Journal, 7(3), 18–36.

    Article  Google Scholar 

  • Charpentier, A., & Flachaire, E. (2019). Pareto models for top incomes. hal id: hal-02145024.

    Google Scholar 

  • Davison, A. (2003). Statistical models. Cambridge: Cambridge University Press.

    Google Scholar 

  • de Haan, L., & Ferreira, A. (2006). Extreme value theory: An introduction. Springer series in operations research and financial engineering.

    Google Scholar 

  • de Haan, L., & Stadtmüller, U. (1996). Generalized regular variation of second order. Journal of the Australian Mathematical Society, 61, 381–395.

    Article  Google Scholar 

  • Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–290.

    Article  Google Scholar 

  • Gabaix, X. (2009). Power laws in economics and finance. Annual Review of Economics, 1(1), 255–294.

    Article  Google Scholar 

  • Ghosh, S., & Resnick, S. (2010). A discussion on mean excess plots. Stochastic Processes and Their Applications, 120(8), 1492–1517.

    Article  Google Scholar 

  • Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics, 44(3), 423–453.

    Article  Google Scholar 

  • Goldie, C. M., & Klüppelberg, C. (1998). Subexponential distributions. In R. J. Adler, R. E. Feldman, & M. S. Taqqu (Eds.), A practical guide to heavy tails (pp. 436–459). Basel: Birkhäuser.

    Google Scholar 

  • Guess, F., & Proschan, F. (1988). 12 mean residual life: Theory and applications. In Quality control and reliability. Handbook of statistics (Vol. 7, pp. 215–224). Amsterdam: Elsevier.

    Google Scholar 

  • Hagstroem, K. G. (1925). La loi de pareto et la reassurance. Skandinavisk Aktuarietidskrift, 25.

    Google Scholar 

  • Hagstroem, K. G. (1960). Remarks on Pareto distributions. Scandinavian Actuarial Journal, 60(1–2), 59–71.

    Article  Google Scholar 

  • Hall, P. (1982). On some simple estimate of an exponent of regular variation. Journal of the Royal Statistical Society: Series B, 44, 37–42.

    Google Scholar 

  • Jessen, A. H., & Mikosch, T. (2006). Regularly varying functions. Publications de l’Institut Mathématique, 19, 171–192.

    Article  Google Scholar 

  • Klüppelberg, C. (2004). Risk management with extreme value theory. In B. Finkenstädt, & H. Rootzén (Eds.), Extreme values in finance, telecommunications, and the environment (Chap. 3, pp. 101–168). Oxford: Chapman & Hall/CRC.

    Google Scholar 

  • Kremer, E. (1984). Rating of non proportional reinsurance treaties based on ordered claims (pp. 285–314). Dordrecht: Springer.

    Google Scholar 

  • Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49(268), 847–852.

    Article  Google Scholar 

  • McNeil, A. (1997). Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bulletin, 27(27), 117–137.

    Article  Google Scholar 

  • McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3), 271–300. Special issue on Risk Management.

    Google Scholar 

  • O’Brien, G. L. (1980). A limit theorem for sample maxima and heavy branches in Galton-Watson trees. Journal of Applied Probability, 17(2), 539–545.

    Article  Google Scholar 

  • Pareto, V. (1895). La legge della domanda. In Pareto (Ed.), Ecrits d’économie politique pure (Chap. 11, pp. 295–304). Genève: Librairie Droz.

    Google Scholar 

  • Peng, L., & Qi, Y. (2004). Estimating the first- and second-order parameters of a heavy-tailed distribution. Australian & New Zealand Journal of Statistics, 46, 305–312.

    Article  Google Scholar 

  • Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 23, 119–131.

    Google Scholar 

  • Resnick, S. (2007). Heavy-tail phenomena: Probabilistic and statistical modeling (Vol. 10). New York: Springer.

    Google Scholar 

  • Resnick, S. I. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN Bulletin, 27(1), 139–151.

    Article  Google Scholar 

  • Reynkens, T. (2018). ReIns: Functions from “Reinsurance: Actuarial and statistical aspects”. R package version 1.0.8.

    Google Scholar 

  • Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54, 507–554.

    Google Scholar 

  • Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.

    Article  Google Scholar 

  • Schumpeter, J. A. (1949). Vilfredo Pareto (1848–1923). The Quarterly Journal of Economics, 63(2), 147–173.

    Article  Google Scholar 

  • Scollnik, D. P. M. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20–33.

    Article  Google Scholar 

  • Smith, R. L. (1987). Estimating tails of probability distributions. Annals of Statistics, 15(3), 1174–1207.

    Google Scholar 

  • Vajda, S. (1951). Analytical studies in stop-loss reinsurance. Scandinavian Actuarial Journal, 1951(1–2), 158–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Charpentier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charpentier, A., Flachaire, E. (2021). Pareto Models for Risk Management. In: Dufrénot, G., Matsuki, T. (eds) Recent Econometric Techniques for Macroeconomic and Financial Data. Dynamic Modeling and Econometrics in Economics and Finance, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-54252-8_14

Download citation

Publish with us

Policies and ethics

Navigation