Part of the book series: Springer Theses ((Springer Theses))

Abstract

The effective thermal conductivity in a porous Cu–fluid system is affected by three heat transfer mechanisms: solid conduction, fluid conduction and natural convection. Heat conduction through the solid phase in porous Cu is dependent on the fraction of the solid phase and the structure of the solid phase. Heat transfer through the fluid phase depends on the properties, principally the viscosity and thermal conductivity, and the motions of the fluid. The effects of fluid phase, porosity, pore size and copper particle size on the effective thermal conductivity of LCS porous copper are investigated in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharya, A., Calmidi, V., & Mahajan, R. (2002). Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer, 45(5), 1017–1031.

    Article  CAS  Google Scholar 

  2. Paek, J., Kang, B., Kim, S., & Hyun, J. M. (2000). Effective thermal conductivity and permeability of aluminum foam materials. International Journal of Thermophysics, 21(2), 453–464.

    Article  CAS  Google Scholar 

  3. Leach, A. (1993). The thermal conductivity of foams. i. models for heat conduction. Journal of Physics D Applied Physics, 26(5), 733.

    Article  CAS  Google Scholar 

  4. Russell, H. (1935). Principles of heat flow in porous insulators. Journal of the American Ceramic Society, 18(1–12), 1–5.

    Article  CAS  Google Scholar 

  5. Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559–632.

    Article  CAS  Google Scholar 

  6. Upadhyaya, G. S. (1997). Powder metallurgy technology. Cambridge Int Science Publishing.

    Google Scholar 

  7. Nield, D. A., Bejan, A. et al. (2006). Convection in porous media (Vol. 3). Springer.

    Google Scholar 

  8. Thewsey, D. & Zhao, Y. (2008). Thermal conductivity of porous copper manufactured by the lost carbonate sintering process. physica status solidi (a) 205(5), 1126–1131.

    Google Scholar 

  9. Solórzano, E., Reglero, J., Rodríguez-Pérez, M., Lehmhus, D., Wichmann, M., & De Saja, J. (2008). An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. International Journal of Heat and Mass Transfer, 51(25–26), 6259–6267.

    Article  Google Scholar 

  10. Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J., Wadley, H., & Gibson, L. (2000). Metal foams: a design guide. Elsevier.

    Google Scholar 

  11. Diao, K., **ao, Z., & Zhao, Y. (2015). Specific surface areas of porous cu manufactured by lost carbonate sintering: Measurements by quantitative stereology and cyclic voltammetry. Materials Chemistry and Physics, 162, 571–579.

    Article  CAS  Google Scholar 

  12. Diao, K., Zhang, L., & Zhao, Y. (2017). Measurement of tortuosity of porous cu using a diffusion diaphragm cell. Measurement, 110, 335–338.

    Article  Google Scholar 

  13. Wakao, N., & Funazkri, T. (1978). Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of sherwood numbers. Chemical Engineering Science, 33(10), 1375–1384.

    Article  CAS  Google Scholar 

  14. Hwang, G., & Chao, C. (1994). Heat transfer measurement and analysis for sintered porous channels. Journal of Heat Transfer, 116(2), 456–464.

    Article  Google Scholar 

  15. Hunt, M., & Tien, C. (1988). Effects of thermal dispersion on forced convection in fibrous media. International Journal of Heat and Mass Transfer, 31(2), 301–309.

    Article  CAS  Google Scholar 

  16. Calmidi, V., & Mahajan, R. (1999). The effective thermal conductivity of high porosity fibrous metal foams. Journal of Heat Transfer, 121(2), 466–471.

    Article  CAS  Google Scholar 

  17. Baloyo, J. M., & Zhao, Y. (2015). Heat transfer performance of micro-porous copper foams with homogeneous and hybrid structures manufactured by lost carbonate sintering. MRS Online Proceedings Library Archive, 1779, 39–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **anke Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X. (2020). Thermal Performance of Porous Copper. In: Fluid Flow and Heat Transfer in Porous Media Manufactured by a Space Holder Method. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-53602-2_5

Download citation

Publish with us

Policies and ethics

Navigation