Influence of Centrality Definition and Detector Efficiency on the Net-Proton Kurtosis

  • Conference paper
  • First Online:
The XVIII International Conference on Strangeness in Quark Matter (SQM 2019)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 250))

  • 440 Accesses

Abstract

We study the influence of the centrality definition and detector efficiency on the net-proton kurtosis for minimum bias Au\(+\)Au collisions at a beam energy of \(\sqrt{s_{\mathrm {NN}}}= 7.7\) GeV by using the UrQMD model. We find that different ways of defining the centrality lead to different cumulant ratios. Moreover, we demonstrate that the kurtosis is suppressed for central collisions when a wider transverse momentum acceptance is used. Finally, the influence of a detector efficiency on the measured cumulant ratios is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.A. Stephanov, QCD phase diagram and the critical point. Prog. Theor. Phys. Suppl. 153, 139 (2004). https://doi.org/10.1142/S0217751X05027965

    Article  ADS  Google Scholar 

  2. J. Randrup, Spinodal decomposition during the hadronization stage at RHIC? Phys. Rev. Lett. 92, 122301 (2004). https://doi.org/10.1103/PhysRevLett.92.122301

    Article  ADS  Google Scholar 

  3. C. Sasaki, B. Friman, K. Redlich, Density fluctuations in the presence of spinodal instabilities. Phys. Rev. Lett. 99, 232301 (2007). https://doi.org/10.1103/PhysRevLett.99.232301

    Article  ADS  Google Scholar 

  4. M.A. Stephanov, Non-Gaussian fluctuations near the QCD critical point. Phys. Rev. Lett. 102, 032301 (2009). https://doi.org/10.1103/PhysRevLett.102.032301

    Article  ADS  Google Scholar 

  5. C. Herold, M. Bleicher, M. Nahrgang, J. Steinheimer, A. Limphirat, C. Kobdaj, Y. Yan, Broadening of the chiral critical region in a hydrodynamically expanding medium. Eur. Phys. J. A 54(2), 19 (2018). https://doi.org/10.1140/epja/i2018-12438-1

  6. M. Nahrgang, C. Herold, M. Bleicher, Influence of an inhomogeneous and expanding medium on signals of the QCD phase transition. Nucl. Phys. A 904–905, 899c (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.160

    Article  ADS  Google Scholar 

  7. M. Szymański, M. Bluhm, K. Redlich, C. Sasaki, Net-proton number fluctuations in the presence of the QCD critical point

    Google Scholar 

  8. M. Cheng et al., Baryon number, strangeness and electric charge fluctuations in QCD at high temperature. Phys. Rev. D 79, 074505 (2009)

    Article  ADS  Google Scholar 

  9. W.J. Fu, Y.X. Liu, Y.L. Wu, Fluctuations and correlations of conserved charges in QCD at finite temperature with effective models. Phys. Rev. D 81, 014028 (2010)

    Google Scholar 

  10. L. Chen, X. Pan, F.B. **ong, L. Li, N. Li, Z. Li, G. Wang, Y. Wu, Statistical and dynamical fluctuations in the ratios of higher net-proton cumulants in relativistic heavy-ion collisions. J. Phys. G 38, 115004 (2011)

    Article  ADS  Google Scholar 

  11. F. Karsch, K. Redlich, Has Tc been measured by heavy ion experiments? Phys. Rev. D 84, 051504 (2011)

    Article  ADS  Google Scholar 

  12. B.J. Schaefer, M. Wagner, QCD critical region and higher moments for three flavor models. Phys. Rev. D 85, 034027 (2012)

    Article  ADS  Google Scholar 

  13. X. Wang, C.B. Yang, On the energy and centrality dependence of higher order moments of net-proton distributions in relativistic heavy ion collisions. Phys. Rev. C 85, 044905 (2012)

    Article  ADS  Google Scholar 

  14. D.M. Zhou, A. Limphirat, Y.I., Yan, C. Yun, Y.P., Yan, X. Cai, L.P. Csernai, B.H. Sa, Higher moment singularities explored by the net proton non-statistical fluctuations. Phys. Rev. C 85, 064916 (2012)

    Google Scholar 

  15. P. Rau, J. Steinheimer, S. Schramm, H. Stöcker, Conserved charge fluctuations in a chiral hadronic model including hadrons and quarks. Phys. Lett. B 733, 176 (2014). https://doi.org/10.1016/j.physletb.2014.04.035

    Article  ADS  Google Scholar 

  16. W. Fan, X. Luo, H. Zong, Probing the QCD phase structure with higher order baryon number susceptibilities within the NJL model. Chin. Phys. C 43(3), 033103 (2019). https://doi.org/10.1088/1674-1137/43/3/033103

  17. M.M. Aggarwal et al. (STAR Collaboration), Higher moments of net-proton multiplicity distributions at RHIC. Phys. Rev. Lett. 105, 022302 (2010)

    Google Scholar 

  18. X.F. Luo (STAR Collaboration), Probing the QCD critical point with higher moments of net-proton multiplicity distributions. J. Phys. Conf. Ser. 316, 012003 (2011)

    Google Scholar 

  19. L. Adamczyk et al. (STAR Collaboration), Energy dependence of moments of net-proton multiplicity distributions at RHIC. Phys. Rev. Lett. 112, 032302 (2014)

    Google Scholar 

  20. L. Adamczyk et al. (STAR Collaboration), Beam energy dependence of moments of the net-charge multiplicity distributions in Au\(+\)Au collisions at RHIC. Phys. Rev. Lett. 113, 092301 (2014)

    Google Scholar 

  21. A. Adare et al. (PHENIX Collaboration), Measurement of higher cumulants of net-charge multiplicity distributions in Au\(+\)Au collisions at \(\sqrt{s_{_{NN}}}=7.7-200\) GeV. Phys. Rev. C 93(1), 011901 (2016)

    Google Scholar 

  22. J. Xu, Energy dependence of moments of net-proton, net-kaon, and net-charge multiplicity distributions at STAR. J. Phys. Conf. Ser. 736(1), 012002 (2016). https://doi.org/10.1088/1742-6596/736/1/012002

  23. B. Abelev et al. (ALICE Collaboration), Net-charge fluctuations in Pb-Pb collisions at \(\sqrt{s}_{NN} = 2.76\) TeV. Phys. Rev. Lett. 110(15), 152301 (2013)

    Google Scholar 

  24. A. Rustamov, (ALICE Collaboration), Net-baryon fluctuations measured with ALICE at the CERN LHC, ar**v:1704.05329 [nucl-ex]

  25. A. Ohlson (ALICE Collaboration), Measurements of the fluctuations of identified particles in ALICE at the LHC. PoS CPOD 2017, 031 (2018). https://doi.org/10.22323/1.311.0031

  26. S.A. Bass et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255 (1998)

    Article  ADS  Google Scholar 

  27. M. Bleicher et al., Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model. J. Phys. G 25, 1859 (1999)

    Article  ADS  Google Scholar 

  28. G. Graef, J. Steinheimer, F. Li, M. Bleicher, Deep sub-threshold \(\var** \) and \(\varLambda \) production in nuclear collisions with the UrQMD transport model. Phys. Rev. C 90, 064909 (2014)

    Article  ADS  Google Scholar 

  29. C. Patrignani et al. (Particle Data Group), Rev. Part. Phys. Chin. Phys. C 40(10), 100001 (2016)

    Google Scholar 

  30. X. Luo, Error estimation for moments analysis in heavy ion collision experiment. J. Phys. G 39, 025008 (2012)

    Article  ADS  Google Scholar 

  31. S. Sombun, J. Steinheimer, C. Herold, A. Limphirat, Y. Yan, M. Bleicher, Higher order net-proton number cumulants dependence on the centrality definition and other spurious effects. J. Phys. G 45(2), 025101 (2018). https://doi.org/10.1088/1361-6471/aa9c6c

  32. B.I. Abelev et al. (STAR Collaboration), Systematic measurements of identified particle spectra in \(p p, d^+\) Au and Au\(+\)Au collisions from STAR. Phys. Rev. C 79, 034909 (2009)

    Google Scholar 

Download references

Acknowledgments

The computational resources have been provided by the LOEWE Frankfurt Center for Scientific Computing (LOEWE-CSC) and the Center for Computer Services at SUT. This work is supported by the German Academic Exchange Service (DAAD), HIC for FAIR and the Thailand Research Fund (TRF). SS and AL acknowledge support from TRF-RGJ (PHD/0185/2558). CH, AL and YY acknowledge support from Suranaree University of Technology and the Office of the Higher Education Commission under NRU project of Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanya Sombun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sombun, S., Steinheimer, J., Herold, C., Limphirat, A., Yan, Y., Bleicher, M. (2020). Influence of Centrality Definition and Detector Efficiency on the Net-Proton Kurtosis. In: Elia, D., Bruno, G.E., Colangelo, P., Cosmai, L. (eds) The XVIII International Conference on Strangeness in Quark Matter (SQM 2019). Springer Proceedings in Physics, vol 250. Springer, Cham. https://doi.org/10.1007/978-3-030-53448-6_53

Download citation

Publish with us

Policies and ethics

Navigation