Transformation of Agricultural Breeding Techniques Using Biotechnology as a Tool

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 45

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 45))

Abstract

New agricultural breeding techniques offer advancement for the development of quality crop trait which is used commercially in both private and public sector. The success of techniques is still challenging at scientific level, interrupted under political influences as well as affected at social level. There are few institutional and social barriers in the implication of new plant breeding technologies, reported from data obtained during survey by an international panel of experts. Major issues for the succession of breeding techniques are associated with regulatory as well environmental concerns. But there is an increasing demand of appetite with diversity in nutritional status, more productivity. Newer breeding techniques involving marker-assisted selection, gene editing and enhanced productivity are an advanced science which uses innovation at genetic and biotechnological level. The technique may also provide advances in gathering information regarding unique quality of particular plant. Develo** methods to store, share, and quickly analyze these data will produce significant advances in plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CRISPR:

Clustered Regularly Interspaced Short Palindromic Repeats

DNA:

Deoxy ribonucleic acid

GM:

Genetically modified crops

HDR:

homology-directed repair

NPBT:

New Plant Breeding Techniques

References

  • Abdallah NA, Prakash CS, Mc Hughen AG (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops & Food 6(4):183–205. https://doi.org/10.1080/21645698.2015.1129937

    Article  Google Scholar 

  • Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 27(7):221

    Google Scholar 

  • Borrelli VM, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci 9:1245. https://doi.org/10.3389/fpls.2018.01245

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobb JN, Biswas PS, Platten JD (2019a) Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet 132(3):647–667. https://doi.org/10.1007/s00122-018-3266-4

    Article  CAS  PubMed  Google Scholar 

  • Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng EH (2019b) Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet 132(3):627–645. https://doi.org/10.1007/s00122-019-03317-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Diez MJ, De la Rosa L, Martín I, Guasch Pereira LM, Cartea ME, Mallor C, Casals J, Simo Cruanyes J, Rivera A, Anastasio G, Prohens J (2018) Plant genebanks: present situation and proposals for their improvement. The case of the Spanish network. Front Plant Sci 9:1794

    Article  PubMed  PubMed Central  Google Scholar 

  • EFSA (2012) Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J 10(2):1–33

    Google Scholar 

  • Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke MV (2011) Application of a high-speed breeding technology to apple (Malusdomestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192(2):364–377

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto R, Uezono K, Ishikura S, Osabe K, Peacock WJ, Dennis ES (2018) Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breed Sci 17(1):55

    Google Scholar 

  • Garcia-Sancho M, Myelnikov D (2019) Between mice and sheep: biotechnology, agricultural science and animal models in late-twentieth century Edinburgh. Stud Hist Phil Sci C Stud Hist Phil Biol Biomed Sci 75:24–33

    Article  Google Scholar 

  • Gottardo P, Gorjanc G, Battagin M, Gaynor RC, Jenko J, Ros-Freixedes R, Whitelaw CB, Mileham AJ, Herring WO, Hickey JM (2019) A strategy to exploit surrogate sire technology in livestock breeding programs. G3: Genes, Genomes, Genetics 9(1):203–215

    Article  Google Scholar 

  • Hadasch S, Simko I, Hayes RJ, Ogutu JO, Piepho HP (2016) Comparing the predictive abilities of phenotypic and marker-assisted selection methods in a biparental lettuce population. Plant Genome 9(1):576–579

    Article  Google Scholar 

  • Han Y, Cameron JN, Wang L, Beavis WD (2017) The predicted cross value for genetic introgression of multiple alleles. Genetics 205(4):1409–1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Åšmiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:889

    Article  Google Scholar 

  • Hundleby PA, Harwood WA (2019) Impacts of the EU GMO regulatory framework for plant genome editing. Food Energy Secur 8(2):e00161

    Article  PubMed  Google Scholar 

  • Ishii T, Araki M (2016) Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35(7):1507–1518. https://doi.org/10.1007/s00299-016-1974-2

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan S, Ullah MW, Siddique R, Nabi G, Manan S, Yousaf M, Hou H (2016) Role of recombinant DNA technology to improve life. Int J Genomics 2016:2405954

    PubMed  PubMed Central  Google Scholar 

  • Ladics GS, Bartholomaeus A, Bregitzer P, Doerrer NG, Gray A, Holzhauser T, Jordan M, Keese P, Kok E, Macdonald P, Parrott W (2015) Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res 24(4):587–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamalakshmi Devi E, Chongtham SK, Holeyachi P, Kousar N, Singh M, Behera C, Telem RS, Singh NB, Wani SH (2013) Cisgenesis and intragenesis: twin sisters for crop improvement. Res J Agric For Sci 1(10):22–26

    Google Scholar 

  • Li F, Li Y, Cao L, Liu P, Geng M, Zhang Q, Qiu L, Sun Q, **e C (2018) Simultaneous transfer of leaf rust and powdery mildew resistance genes from hexaploid triticale cultivar sorento into bread wheat. Front Plant Sci 9:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long HK, Prescott SL, Wysocka J (2016) Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167(5):1170–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzoyan Z, Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P (2019) Drosophila melanogaster: a model organism to study cancer. Front Genet 10:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujjassim NE, Mallik M, Rathod NKK, Nitesh SD (2019) Cisgenesis and intragenesis a new tool for conventional plant breeding. J Pharmacogn Phytochem 8(1):2485–2489

    CAS  Google Scholar 

  • Oliver MJ (2014) Why we need GMO crops in agriculture. Mo Med 111(6):492

    PubMed  PubMed Central  Google Scholar 

  • Ozdemir BS, Budak H (2018) Application of tissue culture and transformation techniques in model species Brachypodium distachyon. Brachypodium genomics. Humana Press, New York, pp 289–310

    Google Scholar 

  • Perry ED, Ciliberto F, Hennessy DA, Moschini G (2016) Genetically engineered crops and pesticide use in US maize and soybeans. Sci Adv 2(8):e1600850

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman R (2017) The impact of genetically modified (GM) crops in modern agriculture: a review. GM Crops & Food 8(4):195–208. https://doi.org/10.1080/21645698.2017.1413522

    Article  Google Scholar 

  • Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Arshad I, Muhammad H, Hameed MK, Khan MS, Joyia FA (2019) Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox. Int J Mol Sci 20(16):40–45

    Article  Google Scholar 

  • Ryan MJ, McCluskey K, Verkleij G, Robert V, Smith D (2019) Fungal biological resources to support international development: challenges and opportunities. World J Microbiol Biotechnol 35(9):139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha SK, Saikot FK, Rahman MS, Jamal MA, Rahman SK, Islam SR, Kim KH (2018) Programmable molecular scissors: applications of a new tool for genome editing in biotech. Mol Ther-Nucleic Acids 14:212–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Salisu IB, Shahid AA, Yaqoob A, Ali Q, Bajwa KS, Rao AQ, Husnain T (2017) Molecular approaches for high throughput detection and quantification of genetically modified crops: a review. Front Plant Sci 8:1670

    Article  PubMed  PubMed Central  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedeek KE, Mahas A, Mahfouz M (2019) Plant genome engineering for targeted improvement of crop traits. Front Plant Sci 10:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla SK, Mangwani N, Rao TS, Das S (2014) Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In: Microbial biodegradation and bioremediation. Elsevier, Oxford, pp 203–232

    Chapter  Google Scholar 

  • Spielman DJ, Kennedy A (2016) Towards better metrics and policymaking for seed system development: insights from Asia’s seed industry. Agric Syst 147:111–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Suso MJ, Bebeli PJ, Christmann S, Mateus C, Negri V, Pinheiro de Carvalho MA, Torricelli R, Veloso MM (2016) Enhancing legume ecosystem services through an understanding of plant–pollinator interplay. Front Plant Sci 7:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Tagliabue G (2018) Scientific mistakes from the agri-food biotech critics. Life Sci Soc Policy 14(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka J, Hayashi T, Iwata H (2016) A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed Sci 66:15038

    Article  Google Scholar 

  • Venken KJ, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL (2016) Genome engineering: drosophila melanogaster and beyond. Wiley Interdiscip Rev Dev Biol 5(2):233–267

    Article  CAS  PubMed  Google Scholar 

  • Wambugu PW, Ndjiondjop MN, Henry RJ (2018) Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief Funct Genomics 17(3):198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Zhang H, Zhu H (2019) CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic Res 6(1):77

    Article  PubMed  PubMed Central  Google Scholar 

  • Yenni GM, Christensen EM, Bledsoe EK, Supp SR, Diaz RM, White EP, Ernest SM (2019) Develo** a modern data workflow for regularly updated data. PLoS Biol 17(1):e3000125

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi SS, Vanderschuren H, Qaim M, Mahfouz MM, Kohli A, Mansoor S, Tester M (2019) New plant breeding technologies for food security. Science 363(6434):1390–1391. https://doi.org/10.1126/science.aav6316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Managing Director and Vice chancellor of ITM University Gwalior, India for providing required facility & their valuable support and encouragement throughout the work.

Conflict of Interests

There is no conflict of interest. Each authors share equal membership.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khare, E., Chauhan, P.S. (2020). Transformation of Agricultural Breeding Techniques Using Biotechnology as a Tool. In: Guleria, P., Kumar, V., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 45. Sustainable Agriculture Reviews, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-53017-4_9

Download citation

Publish with us

Policies and ethics

Navigation