Enhanced Fluoropolymer Surface Adhesion by a Plasma Hybrid Process—Metal Plating Technology and Its Application to Millimeter-Wave Devices

  • Chapter
  • First Online:
Plasma Modification of Polyolefins

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

An improvement of the adhesiveness of PTFE/plastic using a plasma hybrid process, metal plating technology, and its application to millimeter-wave devices are described. Atmospheric-pressure plasma graft polymerization (also called “atmospheric-pressure plasma hybrid surface treatment”), which has been developed by the group of the author, is presented as an innovative surface treatment method to improve the PTFE adhesiveness and enable surface plating with minimal impact on the environment. First, the applicability of PTFE/plastics to millimeter-wave devices is briefly described, while next section presents the atmospheric-pressure plasma hybrid surface treatment that enables plating on PTFE. Next, methods to assess the effect of the surface treatment on PTFE metal plating are described. Final section describes several examples of improved strength of fiber-reinforced composite materials, which have a low dielectric constant similar to that of PTFE and can be used in radar domes. Some trial production results using this plasma hybrid surface treatment technology are also provided. Long-term durable adhesion properties of the surface are improved by this type of plasma treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 232.09
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Okubo, M., Tahara, M., Saeki, N., Yamamoto, T.: Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization. Thin Solid Films, Elsevier 516(19), 6592–6597 (2008)

    Article  CAS  Google Scholar 

  2. Hori, K., Fujimoto, S., Togashi, Y., Kuroki, T., Okubo, M.: Improvement in molecular-level adhesive strength of PTFE film treated by atmospheric plasma combined processing. IEEE Trans. Ind. Applicat. (2018). https://doi.org/10.1109/TIA.2018.2868035

    Article  Google Scholar 

  3. Okubo, M., Tahara, M., Kuroki, T., Hibino, T., Saeki, N.: Plating technology for fluorocarbon polymer films using atmospheric-pressure nonthermal plasma graft polymerization. J. Photopolymer Sci. Tech. 21, 219–224 (2008)

    Article  CAS  Google Scholar 

  4. Okubo, M., Tahara, M., Aburatani, Y., Kuroki, T., Hibino, T.: Preparation of PTFE film with adhesive surface treated by atmospheric-pressure nonthermal plasma graft polymerization. IEEE Trans. Ind. Applicat. 46(5), 1715–1721 (2010)

    Article  CAS  Google Scholar 

  5. Feng, Z., Saeki, N., Kuroki, T., Tahara, M., Okubo, M.: Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge, Appl. Phys. Lett. 101, 041602 (2012)

    Google Scholar 

  6. Kuroki, T., Tahara, M., Kuwahara, T., Okubo, M.: Microfabrication and metal plating technologies on polytetrafluoroethylene film surface treated by atmospheric-pressure nonthermal-plasma graft polymerization process. IEEE Trans. Ind. Applicat. 50(1), 45–50 (2014)

    Article  CAS  Google Scholar 

  7. Kuroki, T., Nakayama, K., Nakamura, D., Onji, T., Okubo, M.: Nonthermal plasma hybrid process for preparation of organic electro-luminescence fluoropolymer film devices. IEEE Trans. Ind. Applicat. 51(3), 2497–2503 (2015)

    Article  CAS  Google Scholar 

  8. Okubo, M., Onji, T., Kuroki, T., Nakano, H., Yao, E., Tahara, M.: Molecular-level reinforced adhesion between rubber and PTFE film treated by atmospheric plasma polymerization, Plasma Chem. Plasma P. 36, 1431−1448 (2016)

    Google Scholar 

  9. Latini, G., Tan, L.W., Cacialli, F., Silva, S.R.P.: Superficial fluoropolymer layers for efficient light-emitting diodes. Org. Electron. 13(6), 992–998 (2012)

    Article  CAS  Google Scholar 

  10. Wang, J.C., Karmakar, R.S., Lu, Y.J., Wu, M.C., Wei, K.C.: Nitrogen plasma surface modification of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films to enhance the piezoresistive pressure-sensing properties, J. Phys. Chem. C, 120(5), 25977−25984 (2016)

    Google Scholar 

  11. Tahara, M., Cuong, N.K., Nakashima, Y.: Improvement in adhesion of polyethylene by glow-discharge plasma. Surf. Coatings Technol. 174–175, 826–830 (2003)

    Article  Google Scholar 

  12. Cernáková, L., Kovácik, D., Zahoranová, A., Cernák, M., Mazúr, M.: Surface modification of polypropylene non-woven fabrics by atmospheric-pressure plasma activation followed by acrylic acid grafting. Plasma Chem. Plasma P. 25(4) 427−437 (2005)

    Google Scholar 

  13. Wang, R., Zhang, C., Liu, X., **e, Q., Yan, P., Shao, T.: Microsecond pulse driven Ar/CF4 plasma jet for polymethylmethacrylate surface modification at atmospheric pressure. Appl. Surf. Sci. 328, 509−515 (2015)

    Google Scholar 

  14. Ma, S., Zhang, X., Yu, B., Zhou, F.: Brushing up functional materials. NPG Asia Materials 11, 24 (2019)

    Article  Google Scholar 

  15. Griffin, M.F., Ibrahim, A., Seifalian, A.M., Butler, P.E.M., Kalaskar, D.M., Ferretti, P.: Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering. Mater. Sci. Eng. C 105, 110085 (2019)

    Google Scholar 

  16. Savoji, H., Mohammadi, M.H., Rafatian, N., Toroghi, M.K., Wang, E.Y., Zhao, Y., Korolj, A., Ahadian, S., Radisic, M.: Cardiovascular disease models: a game changing paradigm in drug discovery and screening. Biomaterials 198, 3–26 (2019)

    Article  CAS  Google Scholar 

  17. Ohkubo, Y., Endo, K., Yamamura, K.: Adhesive-free adhesion between heat-assisted plasma-treated fluoropolymers (PTFE, PFA) and plasma-jet-treated polydimethylsiloxane (PDMS) and its application. Sci. Rep. 8(1) (2018)

    Google Scholar 

  18. Schonhorn, H., Hansen, R.H.: Surface treatment of polymers for adhesive bonding. J. Appl. Polym. Sci. 11(8), 1461–1474 (1967)

    Article  Google Scholar 

  19. Miller, M.L., Postal, R.H., Sawyer, P.N., Martin, J.G., Kaplit, M.J.: Conditioning polytetrafluoroethylene surfaces for use in vascular prostheses. J. Appl. Polym. Sci. 14(2), 257–266 (1970)

    Article  CAS  Google Scholar 

  20. Marchesi, J.T., Keith, H.D., Garton, A.: Adhesion to sodium naphthalenide treated fluoropolymers. part iii. mechanism of adhesion. J. Adhes 39(4), 185−205 (1992)

    Google Scholar 

  21. Inagaki, N., Yasuda, H.: Adhesion of glow discharge polymers to metals and polymers. J. Appl. Polym. Sci. 26(10), 3333–3341 (1981)

    Article  CAS  Google Scholar 

  22. Okubo, M., Saeki, N., Taguchi, T., Yamamoto, T.: Development of surface treatment apparatus for manufacturing functional wear using low-temperature plasma. Trans. J. Soc. Mech. Eng. Part A 72(2), 263−268 (2006) (in Japanese)

    Google Scholar 

  23. Macedo, M.J.P., Silva, G.S., Feitor, M.C., Costa, T.H.C., Ito, E.N., Melo, J.D.D.: Surface modification of kapok fibers by cold plasma surface treatment. J. Mater. Res. Technol. 9(2), 2467−2476 (2020)

    Google Scholar 

  24. Haji, A., Ashraf, S., Nasiriboroumand, M., Lievens, C.: Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes. Fibers and Polym. 21(4), 743−750 (2020)

    Google Scholar 

  25. Wang, W., Cai, X.: Polyglycerol-grafted multi-walled carbon nanotubes were prepared by one-pot method and reacted with folic acid to enhanced stability in a physiological medium. Compos. Interfaces 26(11), 989–1000 (2019)

    Article  CAS  Google Scholar 

  26. Amesimeku, J., Song, W., Wang, C.: Fabrication of electrically conductive and improved UV-resistant aramid fabric via bio-inspired polydopamine and graphene oxide coating. J. Text. Inst. 110(10), 1484–1492 (2019)

    Article  CAS  Google Scholar 

  27. Hedayati, M., Reynolds, M.M., Krapf, D., Kipper, M.J.: Nanostructured surfaces that mimic the vascular endothelial glycocalyx reduce blood protein adsorption and prevent fibrin network formation. ACS Appl. Mater. Interfaces 10(38), 31892–31902 (2018)

    Article  CAS  Google Scholar 

  28. Ge, R.-K., Wang, J.-W., Zhang, J., Ren, H.: UV-/moisture-curable silicone-modified poly(urethane–acrylate) adhesive for untreated PET substrate. Polym. Bull. 75(8), 3445−3458 (2018)

    Google Scholar 

  29. Ohkubo, Y., Shibahara, M., Ishihara, K., Nagatani, A., Honda, K., Endo, K., Yamamura, K.: Effect of rubber compounding agent on adhesion strength between rubber and heat-assisted plasma-treated polytetrafluoroethylene (PTFE). J. Adhes. 95(3), 242–257 (2019)

    Article  CAS  Google Scholar 

  30. Yasuda, T.: Purasuchikkusu [Plastics], Kogyo Chosa Kai, 52(5), 79−84 (2001) (in Japanese)

    Google Scholar 

  31. Ando, S.: Fundamental properties of thermally stable and insulating polymeric materials: focusing on polyimides. Mater. Sci. Technol. 48(5), 194−198 (2012) (in Japanese)

    Google Scholar 

  32. Raveendran, A., Sebastian, M.T., Raman, S.: Applications of microwave materials: a review. J. Electron. Mater. 48(5), 2601–2634 (2019). https://doi.org/10.1007/s11664-019-07049-1

    Article  CAS  Google Scholar 

  33. Uezato, Y., Yoshitake, H., Shono, M., Fujimoto, M., Yamawaki, T.: Compact and high-performance millimeter-wave antennas. Fujitsu Ten Tech. J. 36, 19−25 (2011) https://www.denso-ten.com/business/technicaljournal/pdf/36-3.pdf. (Accessed 04 May 2019)

  34. Totoku Electric Co., Ltd., Coaxial cable assembly for microwave applications standard specification, https://www.totoku.com/product/highfrequency/microwave.html. (Accessed 04 May 2019)

  35. Rosato, D., Rosato, D.: Plastics Engineered Product Design, Elsevier, pp. 198−343 (2003)

    Google Scholar 

  36. Aoi, T., Kuroki, T., Tahara, M., Okubo, M.: Improvement of strength characteristics of aerospace fiber reinforced composite materials using atmospheric pressure plasma-graft polymerization treatment. IEEJ Trans. FM. A 131(5), 412−413 (2011) (in Japanese)

    Google Scholar 

  37. Aoi, T., Kuroki, T., Okubo, M.: Improving the strength of fiber reinforced composites for aerospace vehicles by atmospheric pressure plasma graft polymerization, Supervisor, M. Kogoma, Taikiatsu Purazuma No Seiseiseigyo To Ouyo Gijyutsu (Kaiteiban) [Atmospheric Pressure Plasma Generation Control and Application Technology (Revised edition)], Chapter 3, Section 6, Science & Technology Co., Ltd., pp. 169−182 (2012) (in Japanese)

    Google Scholar 

  38. Kamae, T., Kochi, S., Wadahara, E., Shinoda, T., Yoshioka, K.: Advanced-VaRTM system for aircraft structures−material technologies. ICCM-17 Proc 9 (2009). http://iccm-central.org/Proceedings/ICCM17proceedings/papers/A2.9%20Kamae.pdf. (Accessed 21 Sep 2022)

Download references

Acknowledgements

The author would like to thank Dr. Mitsuru Tahara (formerly at Technology Research Institute of Osaka Prefecture), Dr. Noboru Saeki (formerly at Pearl Industry Co., Ltd.), Mr. Tatsuji Aoi (NIPPI Corporation.), Dr. Tomoyuki Kuroki (Osaka Prefecture University), Mr. Kota Hori, Mr. Keisuke Fujimoto, and Mr. Yudai Togashi (formerly Graduate Students of Osaka Prefecture University) for the experiments and analyses supporting the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Okubo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okubo, M. (2022). Enhanced Fluoropolymer Surface Adhesion by a Plasma Hybrid Process—Metal Plating Technology and Its Application to Millimeter-Wave Devices. In: Baneesh, N.S., Sari, P.S., Vackova, T., Thomas, S. (eds) Plasma Modification of Polyolefins. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-52264-3_9

Download citation

Publish with us

Policies and ethics

Navigation