Surface Modification and Hydrophobic Recovery (Aging) of Polyolefin Exposed to Plasma

  • Chapter
  • First Online:
Plasma Modification of Polyolefins

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The hydrophobic characteristic of polymers is considered a limiting property for its applications. To some extent, this has been overcome by techniques such as non-thermal plasma, which, even with a few seconds of application, can increase the surface energy and hydrophilic character of polymers. However, this technique is associated with advantages and disadvantages. Surface degradation related to oxidation and crosslinking are considered irreversible changes, in most cases, while the hydrophobic character is quickly restored, presenting a challenge to researchers all over the world. As a reversible behavior, efforts have been made to understand this particular characteristic of the hydrophobic recovery (or the aging effect) of polymers. The application of non-thermal plasma on polymeric surfaces has also been used in biomedicine as a sterilization device to control the growth of biofilms, as well as to increase the biocompatibility of prosthetic surfaces. This chapter discusses some particular characteristics of polyolefins exposed to plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fridman, A.: Plasma Chemistry. Cambridge University Press, Cambridge, United Kingdom (2008). https://doi.org/10.1017/CBO9780511546075

    Book  Google Scholar 

  2. Yarahmadi, R., Mortazavi, SB., Moridi, P.: Development of air treatment technology using plasma method. 4, 27–35 (2012). https://ijoh.tums.ac.ir/index.php/ijoh/article/view/45

  3. Kong, P.C., Detering, B.A.: Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas. United States: N. p., 2004. Web

    Google Scholar 

  4. De Geyter, N., Morent, R.: Nonthermal plasma sterilization of living and nonliving surfaces. Annu. Rev. Biomed. Eng. 14, 255–274 (2012). https://www.annualreviews.org/doi/10.1146/annurev-bioeng-071811-150110

  5. Hashim, S.A., binti Samsudin, F.N.D., Wong, C.S., et al.: Non-thermal plasma for air and water remediation. Arch. Biochem. Biophys. 605, 34–40 (2016). https://doi.org/10.1016/j.abb.2016.03.032

  6. Penetrante, B.M., Vogtlin, G.E., Bardsley, J.N., et al.: Application of non-thermal plasmas to pollution control. In: World Progress in Plasma Applications, Second International Plasma Symposium Livermore, California, p. 8 (1993)

    Google Scholar 

  7. Fricke, K., Steffen, H., Von Woedtke, T., et al.: High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma. Process. Polym. 8, 51–58 (2011).https://doi.org/10.1002/ppap.201000093

  8. Paisoonsin, S., Pornsunthorntawee, O., Rujiravanit, R.: Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities. Appl. Surf. Sci. 273, 824–835 (2013). https://doi.org/10.1016/j.apsusc.2013.03.026

  9. Friedrich, J.F.: The Plasma Chemistry of Polymer Surfaces. Wiley-VCH, Weinheim, Germany (2012) ISBN: 978-3-527-31853-7

    Book  Google Scholar 

  10. Fridman, G., Friedman, G., Gutsol, A., et al.: Applied plasma medicine. Plasma Process. Polym. 5, 503–533 (2008). https://doi.org/10.1002/ppap.200700154

  11. Ma, W.X., Li, Y.G., Pu, C., Wu, Y.L.: Immobilization of functional biomolecules onto polypropylene fabric using plasma pre-treatment. J. Eng. Fiber Fabr. 15, (2020). https://doi.org/10.1177/1558925020978651

  12. Loh, I-H.: Plasma surface modification in biomedical applications. AST Tech. J. 222, 125–131. https://doi.org/10.1016/S0927-7757(03)00242-5

  13. Nascente, P.A.P.: Espectroscopia de fotoelétrons excitados por raios X. In: Canevarolo SV (ed) Técnicas de Caracterização de Polímeros. Artliber Editora, São Paulo, p 448 (2007)

    Google Scholar 

  14. Huitric, J., Ville, J., Mederic, P., Aubry, T.: Solid-state morphology, structure, and tensile properties of polyethylene/polyamide/nanoclay blends: effect of clay fraction. Polym. Test 58, 96–83 (2017). https://doi.org/10.1016/j.polymertesting.2016.12.020

  15. Kiliaris, P., Papaspyrides, C.D.: Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog. Polym. Sci. 35, 902–958 (2010). https://doi.org/10.1016/j.progpolymsci.2010.03.001

  16. Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer (Guildf) 49, 3187–3204 (2008). https://doi.org/10.1016/j.polymer.2008.04.017

  17. Sinha Ray, S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002

  18. van Krevelen, D.W., te Nijenhuis, K.: Properties of Polymers. Oxford, UK (2009)

    Google Scholar 

  19. Shearn, M., Sun, X., Henry. M.D., et al: Advanced plasma processing: etching, deposition, and wafer bonding techniques for semiconductor applications. Semicond. Technol. 79–84 (2010). https://doi.org/10.5772/8564

  20. Felix, T.: LDPE films exposed to NTP. Florianópolis (2015)

    Google Scholar 

  21. Felix, T.: Funcionalização Físico-Química de Superfícies Poliméricas por Plasma Frio. Universidade Federal de Santa Catarina-Florianópolis/SC, Brazil (2017)

    Google Scholar 

  22. Friedrich, J.: The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design. Wiley-Interscience, Weinheim, Germany (2012)

    Book  Google Scholar 

  23. Hansen, R.H., Schonhorn, H.: A new technique for preparing low surface energy polymers for adhesive bonding. J. Polym. Sci. Part B Polym. Lett. 4, 203–209 (1966). https://doi.org/10.1002/pol.1966.110040309

  24. Friedrich, J., Kuhn, G., Gahde, J.: Untersuchungen zur Plasmaatzung von Polymeren. Teil I: Strukturänderungen von Polymeren nach Plasmaätzung. Acta. Polym. 30, 470–477 (1979). https://doi.org/10.1002/actp.1979.010300802

  25. Chalykh, A.E., Petrova, I.I, Vasilenko, Z.G., et al.: Gas-discharge etching as a method for structural investigations of crystalline polymers. Polym. Sci. (Vysokomol Soyed A )16, 1489–1498 (1974). https://doi.org/10.1016/0032-3950(74)90412-2

  26. Sperling, L.H.: Introduction to Physical Polymer Science, 4th edn. Wiley-Interscience (2006)

    Google Scholar 

  27. Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., et al.: WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78 (2007). https://doi.org/10.1063/1.2432410

  28. Friedrich, J., Gähde, J., Pohl, M.: Untersuchungen zur Plasmaätzung von Polymeren. IV. Selektives Plasmaätzen von Polyethylenen unterschiedlicher Kristallinität. Acta. Polym. 31, 38–315 (1980). https://doi.org/10.1002/actp.1980.010310506

  29. Felix, T.: Estudo cinético da restauração hidrofóbica de polímeros sintéticos modificados por plasma não térmico. Florianópolis (2015)

    Google Scholar 

  30. Fowkes, F.M.: Attractive forces at interfaces. Adv. Chem. Ser. 43–99 (1964). https://doi.org/10.1021/ie50660a008

  31. Owens, D.K., Wendt, R.C.: Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1969). https://doi.org/10.1002/app.1969.070130815

  32. Morra. M., Occhiello. E., Marola, R., et al.: On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. J. Colloid. Interface. Sci. 137, 11–24 (1990). https://doi.org/10.1016/0021-9797(90)90038-P

  33. Van Der Mei, H.C., Stokroos, I., Schakenraad, J.M., Busscher, H.J.: Aging effects of repeatedly glow-discharged polyethylene: Influence on contact angle, infrared absorption, elemental surface composition, and surface topography. J. Adhes. Sci. Technol. 5, 757–769 (1991). https://doi.org/10.1163/156856191X00684

  34. Egitto, F.D., Matienzo, L.J.: Plasma modification of polymer surfaces for adhesion improvement. IBM J. Res. Dev. 38, 423–439 (1994). https://doi.org/10.1147/rd.384.0423

  35. Everaert, E.P., Van Der Mei, H.C., Busscher, H.J.: Hydrophobic recovery of repeatedly plasma-treated silicone rubber. Part 2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen. J. Adhes. Sci. Technol. 8, 351–359 (1996). https://doi.org/10.1163/156856196X00751

  36. Novak, I., Pollak, V.l., Chodak, I.: Study of surface properties of polyolefins modified by corona discharge plasma. Plasma Process. Polym. 3, 355–364 (2006). https://doi.org/10.1002/ppap.200500163

  37. Garbassi, F., Morra, M., Occhiello, E., et al.: Dynamics of macromolecules: a challenge for surface analysis. Surf. Interface Anal. 14, 585–589 (1989). https://doi.org/10.1002/sia.740141004

  38. Wanke, C.H., Barbosa, L.G., Hübner, J.V.M., et al.: Recuperação hidrofóbica de polipropileno tratado por VUV ou plasma. Polímeros 22, 158–163 (2012). https://doi.org/10.1590/S0104-14282012005000027

  39. Bormashenko, E., Chaniel, G., Grynyov, R.: Towards understanding hydrophobic recovery of plasma treated polymers: storing in high polarity liquids suppresses hydrophobic recovery. Appl. Surf. Sci. 273, 549–553 (2013). https://doi.org/10.1016/j.apsusc.2013.02.078

  40. Li, Y.P., Li, S.Y., Shi, W., Lei, M.K.: Hydrophobic over-recovery during aging of polyethylene modified by oxygen capacitively coupled radio frequency plasma: A new approach for stable superhydrophobic surface with high water adhesion. Surf. Coatings Technol. 206, 4952–4958 (2012). https://doi.org/10.1016/j.surfcoat.2012.05.120

  41. Morent, R., De Geyter, N., Leys, C., et al.: Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf. Coatings Technol. 201, 7847–7854 (2007). https://doi.org/10.1016/j.surfcoat.2007.03.018

  42. Ochiello, E., Morra, M., Cinquina, P., Garbassi, F.: Hydrophobic recovery of oxygen-plasma treated polyestyrene. Polymer (Guildf) 33, 3007–3015 (1992). https://doi.org/10.1016/0032-3861(92)90088-E

  43. Bacharouche, J., Haidara, H., Kunemann, P., et al.: Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere. Sens. Actuators, A Phys. 197, 25–29 (2013). https://doi.org/10.1016/j.sna.2013.04.003

  44. Chen, I.J., Lindner, E.: The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces. Langmuir 23, 3118–3122 (2007). https://doi.org/10.1021/la0627720

  45. Eddington, D.T., Puccinelli, J.P., Beebe, D.J.: Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sensors Actuators, B Chem 114, 170–172 (2006). https://doi.org/10.1016/j.snb.2005.04.037

  46. Kim, J., Chaudhury, M.K., Owen, M.J., Orbeck, T.: The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. J. Colloid Interface Sci. 244, 200–207 (2001). https://doi.org/10.1006/jcis.2001.7909

  47. Pinto, S., Alves, P., Matos, C.M., et al.: Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids Surf. B Biointerfaces 81, 20–26 (2010). https://doi.org/10.1016/j.colsurfb.2010.06.014

  48. Langmuir, I.: Overturning and anchoring of monolayers. Science (80-) 87, 493–500 (1938). https://doi.org/10.1126/science.87.2266.493

  49. Yasuda, H., Sharma, A.K., Yasuda, T.: Effect of orientation and mobility of polymer molecules at surfaces on contact angle and its hysteresis.J. Polym. Sci. Polym. Phys. Ed. 19, 1285–1291 (1981). https://doi.org/10.1002/pol.1981.180190901

  50. Vandenbossche, M., Hegemann, D.: Recent approaches to reduce aging phenomena in oxygen- and nitrogen-containing plasma polymer films: an overview. Curr. Opin. Solid State Mater. Sci. 22, 26–38 (2018). https://doi.org/10.1016/j.cossms.2018.01.001

  51. Schneider, W.A., Wendorff, J.H.: Polymeric Electrets. In: Kuzmany, H., Mehring, M., Roth, S. (eds.) Electronic Properties of Polymers and related Compounds, p. 362. Springer-Verlag, Berlin, Heidelberg (1985)

    Google Scholar 

  52. Sessler, G.M.: Polymeric Electrets. Electr. Prop. Polym. 241–284 (1982). https://doi.org/10.1016/b978-0-12-633680-1.50011-0

  53. Tompkins, B.D., Fisher, E.R.: Evaluation of polymer hydrophobic recovery behavior following H2O plasma processing. J. Appl. Polym. Sci. 132, 1–13. https://doi.org/10.1002/app.41978

  54. Felix, T., Kina, A., Trigueiro, J.S., et al.: Hydrophobic recovery of polymeric surface exposed to non thermal plasma- prespective based on surface conductivity decay. Florianópolis (2019)

    Google Scholar 

  55. MacDonald, B.A., Fallone, B.G.: Charge decay of electrets formed by ionizing radiation in air. J. Electrostat. 31, 27–33 (1993). https://doi.org/10.1016/0304-3886(93)90046-A

  56. Borcia, C., Punga, I.L., Borcia, G.: Surface properties and hydrophobic recovery of polymers treated by atmospheric-pressure plasma. Appl. Surf. Sci. 317, 83–18 (2014). https://doi.org/10.1016/j.apsusc.2014.08.066

  57. Vandencasteele, N., Reniers, F.: Plasma-modified polymer surfaces: characterization using XPS. J. Electron Spectros. Relat. Phenomena 178–179, 394–408 (2010). https://doi.org/10.1016/j.elspec.2009.12.003

  58. Bormashenko, E., Whyman, G., Multanen, V., et al.: Physical mechanisms of interaction of cold plasma with polymer surfaces. J. Colloid Interface Sci. 448, 175–179 (2015). https://doi.org/10.1016/j.jcis.2015.02.025

  59. Herous, L., Nemamcha, M., Remadnia, M., Dascalescu, L.: Factors that influence the surface potential decay on a thin film of polyethylene terephthalate (PET). J. Electrostat. 67, 198–202 (2009). https://doi.org/10.1016/j.elstat.2009.01.028

  60. Ieda, M., Sawa, G., Shinohara, I.: A decay process of surface electric charges across polyethylene film. J. Appl. Phys. 6, 793–794 (1967). https://doi.org/10.1143/JJAP.6.793

  61. Molinie, P., Goldman, M., Gatellet, J.: Surface potential decay on corona charged epoxy samples due to polarization processes. J. Phys. D Appl. Phys. 28, 1601–168 (1995). https://doi.org/10.1088/0022-3727/28/8/009

  62. Kindersberger, J., Lederle, C.: Surface charge decay on insulators in air and sulfurhexafluorid - part II: measurements. IEEE Trans. Dielectr. Electr. Insul. 15, 949–956 (2008). https://doi.org/10.1109/TDEI.2008.4591215

  63. Borcia, G., Anderson, C.A., Brown, N.M.D.: The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part II Appl. Surf. Sci. 225, 186–197 (2004). https://doi.org/10.1016/j.apsusc.2003.10.002

  64. Pascual, M., Balart, R., Sánchez, L., et al.: Study of the aging process of corona discharge plasma effects on low density polyethylene film surface. J. Mater. Sci. 43, 4901–4909 (2008). https://doi.org/10.1007/s10853-008-2712-0

  65. Bormashenko, E., Chaniel, G., Gendelman, O.: Hydrophilization and hydrophobic recovery in polymers obtained by casting of polymer solutions on water surface. J. Colloid Interface Sci. 435, 192–197 (2014). https://doi.org/10.1016/j.jcis.2014.06.053

  66. Behnisch, J., Holländer, A., Zimmermann, H.: Factors influencing the hydrophobic recovery of oxygen-plasma-treated polyethylene. Surf. Coatings Technol. 59, 356–358 (1993). https://doi.org/10.1016/0257-8972(93)90112-2

  67. Vandenbossche, M., Jimenez, M., Casetta, M., et al.: Chitosan-grafted nonwoven geotextile for heavy metals sorption in sediments. React. Funct. Polym. 73, 53–59 (2013). https://doi.org/10.1016/j.reactfunctpolym.2012.09.002

  68. Blythe, A., Bloor, D.: Electrical properties of polymers, 2nd edn. Cambridge University Press, Cambridge, United Kingdom (2005) ISBN: 9780521558389

    Google Scholar 

  69. Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936). https://doi.org/10.1021/ie50320a024

  70. Lopez-Garcia, J.: Wettability analysis and water absorption studies of plasma activated polymeric materials. In: Non-Thermal Plasma Technology for Polymeric Materials. Elsevier, pp. 261–285 (2019). https://doi.org/10.1016/B978-0-12-813152-7.00010-X

Download references

Acknowledgements

The authors are particularly grateful to Instituto Nacional de Engenharia de Superfícies (INCT-INES) for the financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Felix, T., Soldi, V., Debacher, N.A. (2022). Surface Modification and Hydrophobic Recovery (Aging) of Polyolefin Exposed to Plasma. In: Baneesh, N.S., Sari, P.S., Vackova, T., Thomas, S. (eds) Plasma Modification of Polyolefins. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-52264-3_8

Download citation

Publish with us

Policies and ethics

Navigation